scholarly journals Growth Responses and Leaf Antioxidant Metabolism of Grass Pea (Lathyrus sativus L.) Genotypes under Salinity Stress

ISRN Agronomy ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Dibyendu Talukdar

Response of six improved grass pea genotypes to prolonged salinity stress was investigated on seedlings grown in pot experiment using 150 mM NaCl up to 60 days of growth after commencement of treatment (DAC). NaCl exposure significantly reduced growth potential of varieties PUSA-90-2 and WBK-CB-14, but no such effect was observed in varieties B1, BioL-212 and in two mutant lines LR3 and LR4. A time-bound measurement at 15, 30 and 60 DAC revealed significant reduction in plant dry matter production, orchestrated through abnormally low capacity of leaf photosynthesis accompanied by low K+/Na+ ratio and onset of oxidative stress in all six genotypes at 15 DAC and the extension of the phenomena in PUSA-90-2 and WBK-CB-14 to 60 DAC. High superoxide dismutase (SOD) activity coupled with low ascorbate redox and declining ascorbate peroxidase (APX) and catalases (CAT) levels led to abnormal rise in H2O2 content at reproductive stage (30 DAC) in the latter two genotypes, consequently, resulting in NaCl-induced oxidative damage. H2O2 level in the rest of the four genotypes was modulated in a controlled way by balanced action of SOD, APX and CAT, preventing oxidative damage even under prolonged NaCl-exposure. Enzyme isoforms were involved in regulation of foliar H2O2-metabolism, which was critical in determining As tolerance of grass pea genotypes.

2011 ◽  
Vol 77 (4) ◽  
pp. 281-287 ◽  
Author(s):  
Agnieszka I. Piotrowicz-Cieślak ◽  
Wojciech Rybiński ◽  
Dariusz J. Michalczyk

Seeds of <em>Lathyrus sativus</em> cv. Derek and Krab were used as biological material for induced mutagenesis. Three mutant lines were obtained from seeds of grass pea cv. Derek and 15 lines from mutagenised seeds of cv. Krab. Twelve ethanol-soluble carbohydrates were identified in the seeds. We have selected grass pea mutant lines with high oligosaccharides content (lines D4, K56, K25, and K7) and lines with low raffinose family oligosaccharides (RFO) content (lines K12, K29 and K13). Mutations changing the levels of RFO have not affected the contents of galactosyl cyclitols.


2021 ◽  
Vol 22 (2) ◽  
pp. 685
Author(s):  
Krzysztof M. Tokarz ◽  
Wojciech Wesołowski ◽  
Barbara Tokarz ◽  
Wojciech Makowski ◽  
Anna Wysocka ◽  
...  

Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 696
Author(s):  
Reem H. Alzahib ◽  
Hussein M. Migdadi ◽  
Abdullah A. Al Ghamdi ◽  
Mona S. Alwahibi ◽  
Abdullah A. Ibrahim ◽  
...  

Understanding salt tolerance in tomato (Solanum lycopersicum L.) landraces will facilitate their use in genetic improvement. The study assessed the morpho-physiological variability of Hail tomato landraces in response to different salinity levels at seedling stages and recommended a tomato salt-tolerant landrace for future breeding programs. Three tomato landraces, Hail 548, Hail 747, and Hail 1072 were tested under three salinity levels: 75, 150, and 300 mM NaCl. Salinity stress reduced shoots’ fresh and dry weight by 71% and 72%, and roots were 86.5% and 78.6%, respectively. There was 22% reduced chlorophyll content, carotene content by 18.6%, and anthocyanin by 41.1%. Proline content increased for stressed treatments. The 300 mM NaCl treatment recorded the most proline content increases (67.37 mg/g fresh weight), with a percent increase in proline reaching 61.67% in Hail 747. Superoxide dismutase (SOD) activity decreased by 65% in Hail 548, while it relatively increased in Hail 747 and Hail 1072 treated with 300 mM NaCl. Catalase (CAT) activity was enhanced by salt stress in Hail 548 and recorded 7.6%, increasing at 75 and 5.1% at 300 mM NaCl. It revealed a reduction in malondialdehyde (MDA) at the 300 mM NaCl concentration in both Hail 548 and Hail 1072 landraces. Increasing salt concentrations showed a reduction in transpiration rate of 70.55%, 7.13% in stomatal conductance, and 72.34% in photosynthetic rate. K+/Na+ ratios decreased from 56% for 75 mM NaCl to 85% for 300 mM NaCl treatments in all genotypes. The response to salt stress in landraces involved some modifications in morphology, physiology, and metabolism. The landrace Hail 548 may have better protection against salt stress and observed protection against reactive oxygen species (ROS) by increasing enzymatic “antioxidants” activity under salt stress.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jun Ma ◽  
Xiankun Zeng ◽  
Min Zhou ◽  
Le Cheng ◽  
Difeng Ren

AbstractSpirulina platensis protein hydrolysates were prepared by digesting protein extracts with papain, and the hydrolysates were separated into 30, 10, and 3 kDa weights using membrane ultrafiltration. The 0–3 kDa low-molecular-weight Spirulina peptides (LMWSPs) proved the highest chemical antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, hydroxyl radical (·OH) scavenging activities and total antioxidant capacity. Cellular antioxidant ability of LMWPs fractions against 2000 μg/mL H2O2 induced oxidative damage of L02 cells were investigated. The MTT assay results displayed that LMWSPs at different concentrations (0–1000 μg/mL) had proliferation effect on the L02 cells and that treatment of the L02 cells with the 1000 μg/mL LMWSPs (0–3 kDa) significantly prevented H2O2-induced oxidative damage compared with control cells. Moreover, the 2′,7′-dichlorofluorescein diacetate (DCFH-DA) fluorescent probe assay showed that the levels of ROS and NO were significantly lower in the experimental group that was treated with the peptides for 24 h than in the control group. Furthermore, using the corresponding kits, the treatment inhibited the reduction of SOD activity and the increase of MDA contents in the L02 cells. Therefore, LMWSPs (0–3 kDa) may have potential applications in antioxidant and liver health products.


2017 ◽  
Vol 79 (3) ◽  
Author(s):  
Siti Balkis Budin ◽  
Fatin Farhana Jubaidi ◽  
Siti Nur Farahana Mohd Noor Azam ◽  
Nur Liyana Mohamed Yusof ◽  
Izatus Shima Taib ◽  
...  

Previous studies found that Kelulut Honey produced by Trigona spp. bees is able to prevent oxidative damage in various pathological conditions.  Thus, the present study aimed to determine whether Kelulut Honey could prevent the sperm and testicular damage in streptozotocin-induced diabetic rats. Male Adult male Sprague-Dawley rats were divided into four groups: Non-Diabetic (NDM), Non-Diabetic with Kelulut Honey supplementation (NDMKH), Diabetic without supplementation (DM) and Diabetic with Kelulut Honey supplementation (DMKH).  Kelulut honey was given at the dose of 2.0 g/kg weight daily via gavage for 28 consecutive days. Results showed that sperm quality produced by diabetic rats supplemented with Kelulut honey significantly improved compared to the diabetic control groups (p<0.05). SOD activity and GSH level increased significantly (p<0.05) whereas PC and MDA levels significantly decreased in sperm and testis of DMKH rats when compared to DM rats (p<0.05). Histological observation showed obvious increase in spermatozoa in the lumen of epididymis and increased spermatogenic cells density in the testis of DMKH group.  In conclusion, Kelulut Honey has a potential in preventing the damage of sperm and testis in diabetic rats.


Sign in / Sign up

Export Citation Format

Share Document