scholarly journals Biological Aspects of Emerging Benzothiazoles: A Short Review

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Ruhi Ali ◽  
Nadeem Siddiqui

In recent years heterocyclic compounds analogues and derivatives have attracted wide attention due to their useful biological and pharmacological properties. Benzothiazole is among the usually occurring heterocyclic nuclei in many marine as well as natural plant products. Benzothiazole is a privileged bicyclic ring system with multiple applications. It is known to exhibit a wide range of biological properties including anticancer, antimicrobial, and antidiabetic, anticonvulsant, anti-inflammatory, antiviral, antitubercular activities. A large number of therapeutic agents are synthesized with the help of benzothiazole nucleus. During recent years there have been some interesting developments in the biological activities of benzothiazole derivatives. These compounds have special significance in the field of medicinal chemistry due to their remarkable pharmacological potentialities. This review is mainly an attempt to present the research work reported in the recent scientific literature on different biological activities of benzothiazole compounds.

2019 ◽  
Vol 9 (1-s) ◽  
pp. 505-509 ◽  
Author(s):  
Shaheen Sulthana ◽  
P. Pandian

In recent years heterocyclic compounds analogues and derivatives have attracted wide attention due to their useful biological and pharmacological properties. Indole, Benzothiazole and its analogs are versatile substrates, which can be used for the synthesis of numerous heterocyclic compounds. Indole, Benzothiazole and its derivatives are used in organic synthesis and they are used in evaluating new product that possesses different biological activities. Hence, their extensive structural modification has result in different analogues of Indole and Benzothiazole derivatives depicting wide range of biological and pharmacological activities such as antiviral, anticonvulsant, anti-inflammatory, analgesic, antimicrobial and anticancer. This review article literature survey summarizes the synthesis and pharmacological activities of Indole, Benzothiazole and its derivatives. Keywords: Indole, Benzothiazole, antiviral, anticonvulsant, anti-inflammatory, analgesic, antimicrobial and anticancer


2019 ◽  
Vol 16 (1) ◽  
pp. 17-37 ◽  
Author(s):  
Jaskirat Kaur ◽  
Divya Utreja ◽  
Ekta ◽  
Nisha Jain ◽  
Shivali Sharma

Background:Heterocyclic compounds containing nitrogen have been known to possess a very important role in the field of medicinal chemistry. Indole and its derivatives displayed a wide range of biological properties such as anti-inflammatory, analgesic, anti-microbial, anti-convulsant, antidepressant, anti-diabetic, antihelmintic and anti-allergic activities etc. The diverse biological activities exhibited by compounds containing indole moiety has provided the impetus to explore its anti-microbial activity in order to save the valuable life of patients. </P><P> Objective: The review focuses on the advances in the synthesis of indole derivatives and antimicrobial properties exhibited by them.Conclusion:A great deal of work has been done in order to synthesize indole derivatives and to evaluate antimicrobial potential, as indicated by the review. The information provided in this article may be helpful for the researchers for the development of efficient antimicrobial drugs.


2021 ◽  
Vol 33 (12) ◽  
pp. 2896-2918
Author(s):  
Rakesh Singh ◽  
Harpreet Kaur ◽  
Pankaj Gupta

A large number of heterocyclic compounds with five membered rings as the parent nucleus such as tetrazoles, imidazoles, triazoles, oxadiazoles, thiadiazoles, thiazoles, etc. have been studied extensively owing to their fascinating biological properties like anticancer, antifungal, antimicrobial, antitumor, anticonvulsant, antiviral, etc. 1,2,3-Triazoles are important class of five-membered biologically active heterocyclic compounds as they exhibit wide range of pharmacological activities. Triazoles are of two types viz. 1,2,3-triazole and 1,2,4-triazole. These compounds have drawn great attention from chemists and biologists since their discovery. In recent years, triazoles has emerged as an interesting field in drug design for many researchers due to their enormous pharmacological scope. The present review aims to sum up the medicinal significance of 1,2,3-triazoles as one of the most significant structures for the development of drug molecules like anticancer, antibacterial, HIV protease inhibitors, antifungal, anti-inflammatory (COX-1/COX-2 inhibitors), antiprotozoal, anticonvulsant, antioxidant and others, which are under clinical trials. Various benzyl and benzyl-halide functionalized 1,2,3-triazole derivatives like rufinamide, mubritinib (TAK-165) and suvorexant showing excellent biological activities have been used as medicine. In present review, more stress has been laid on the major developments in the therapeutic aspects of triazole pharmacophore for the last two decades.


2019 ◽  
Vol 35 (2) ◽  
pp. 863-869
Author(s):  
Manoj Kumar ◽  
Shashi Sharma ◽  
Hardeep Singh Tuli ◽  
Vinit Parkash

Ferrocenyl substituted heterocyclic compounds have wide range of medicinal approach. The synthesis of ferrocenyl substituted pyrazole is the new concern in these compounds with enhanced biological activities. This work focus on synthesis of ferrocenyl substituted pyrazoles via novel route. The synthesis of 1-phenyl-3-ferrocenyl-pyrazole was investigated involving Friedel Crafts Acylation like reaction conditions. The reaction proceeded through three stages using addition cyclo-condensation of acetyl ferrocene with phenyl hydrazine followed by cyclization using cyclizing reagent iodine in presence of NaHCO3. Individual product separated out having excellent yield (83%). Ferrocenyl substituted pyrazoles were characterized by spectroscopic methods (1H NMR, IR, GC-MS) and their biological properties have been screened.


2019 ◽  
Author(s):  
Chem Int

A series of heterocyclic compounds incorporating pyridazine moiety were for diverse biological activities. Pyridazines and pyridazinones derivatives showed wide spectrum of biological activities such as vasodialator, cardiotonic, anticonvulsant, antihypertensive, antimicrobial, anti-inflammatory, analgesic, anti-feedant, herbicidal, and various other biological, agrochemical and industrial chemical activities. The results illustrated that the synthesized pyridazine/pyridazine compounds have diverse and significant biological activities. Mechanistic insights into the biological properties of pyridazinone derivatives and various synthetic techniques used for their synthesis are also described.


2020 ◽  
Vol 26 (8) ◽  
pp. 867-904 ◽  
Author(s):  
Maria Fesatidou ◽  
Anthi Petrou ◽  
Geronikaki Athina

Background: Bacterial infections are a growing problem worldwide causing morbidity and mortality mainly in developing countries. Moreover, the increased number of microorganisms, developing multiple resistances to known drugs, due to abuse of antibiotics, is another serious problem. This problem becomes more serious for immunocompromised patients and those who are often disposed to opportunistic fungal infections. Objective: The objective of this manuscript is to give an overview of new findings in the field of antimicrobial agents among five-membered heterocyclic compounds. These heterocyclic compounds especially five-membered attracted the interest of the scientific community not only for their occurrence in nature but also due to their wide range of biological activities. Method: To reach our goal, a literature survey that covers the last decade was performed. Results: As a result, recent data on the biological activity of thiazole, thiazolidinone, benzothiazole and thiadiazole derivatives are mentioned. Conclusion: It should be mentioned that despite the progress in the development of new antimicrobial agents, there is still room for new findings. Thus, research still continues.


2020 ◽  
Vol 24 (5) ◽  
pp. 473-486 ◽  
Author(s):  
Ligia S. da Silveira Pinto ◽  
Thatyana R. Alves Vasconcelos ◽  
Claudia Regina B. Gomes ◽  
Marcus Vinícius N. de Souza

Azetidin-2-ones (&#946;-lactams) and its derivatives are an important group of heterocyclic compounds that exhibit a wide range of pharmacological properties such as antibacterial, anticancer, anti-diabetic, anti-inflammatory and anticonvulsant. Efforts have been made over the years to develop novel congeners with superior biological activities and minimal potential for undesirable side effects. The present review aimed to highlight some recent discoveries (2013-2019) on the development of novel azetidin-2-one-based compounds as potential anticancer agents.


2019 ◽  
Vol 16 (5) ◽  
pp. 709-729 ◽  
Author(s):  
Muhammad A. Rashid ◽  
Aisha Ashraf ◽  
Sahibzada S. Rehman ◽  
Shaukat A. Shahid ◽  
Adeel Mahmood ◽  
...  

Background:1,4-Diazepines are two nitrogen containing seven membered heterocyclic compounds and associated with a wide range of biological activities. Due to its medicinal importance, scientists are actively involved in the synthesis, reactions and biological evaluation of 1,4-diazepines since number of decades.Objective:The primary purpose of this review is to discuss the synthetic schemes and reactivity of 1,4- diazepines. This article also describes biological aspects of 1,4-diazepine derivatives, that can be usefully exploited for the pharmaceutical sector.Conclusion:This review summarizes the abundant literature on synthetic routes, chemical reactions and biological attributes of 1,4-diazepine derivatives. We concluded that 1,4-diazepines have significant importance due to their biological activities like antipsychotic, anxiolytic, anthelmintic, anticonvulsant, antibacterial, antifungal and anticancer. 1,4-diazepine derivatives with significant biological activities could be explored for potential use in the pharmaceutical industries.


2020 ◽  
Vol 5 (3) ◽  
pp. 224-235
Author(s):  
Harshal A. Pawar ◽  
Bhagyashree D. Bhangale

Background: Lipid based excipients have increased acceptance nowadays in the development of novel drug delivery systems in order to improve their pharmacokinetic profiles. Drugs encapsulated in lipids have enhanced stability due to the protection they experience in the lipid core of these nano-formulations. Phytosomes are newly discovered drug delivery systems and novel botanical formulation to produce lipophilic molecular complex which imparts stability, increases absorption and bioavailability of phytoconstituent. Curcumin, obtained from turmeric (Curcuma longa), has a wide range of biological activities. The poor solubility and wettability of curcumin are responsible for poor dissolution and this, in turn, results in poor bioavailability. To overcome these limitations, the curcumin-loaded nano phytosomes were developed to improve its physicochemical stability and bioavailability. Objective: The objective of the present research work was to develop nano-phytosomes of curcumin to improve its physicochemical stability and bioavailability. Methods: Curcumin-loaded nano phytosomes were prepared by using phospholipid Phospholipon 90 H using a modified solvent evaporation method. The developed curcumin nano phytosomes were evaluated by particle size analyzer and differential scanning calorimetry (DSC). Results: Results indicated that phytosomes prepared using curcumin and lipid in the ratio of 1:2 show good entrapment efficiency. The obtained curcumin phytosomes were spherical in shape with a size less than 100 nm. The prepared nano phytosomal formulation of curcumin showed promising potential as an antioxidant. Conclusion: The phytosomal complex showed sustained release of curcumin from vesicles. The sustained release of curcumin from phytosome may improve its absorption and lowers the elimination rate with an increase in bioavailability.


2020 ◽  
pp. 004051752092551
Author(s):  
Javeed A Awan ◽  
Saif Ur Rehman ◽  
Muhammad Kashif Bangash ◽  
Fiaz Hussain ◽  
Jean-Noël Jaubert

Curcumin is a naturally occurring hydrophobic polyphenol compound. It exhibits a wide range of biological activities such as antibacterial, anti-inflammatory, anti-carcinogenic, antifungal, anti-HIV, and antimicrobial activity. In this research work, antimicrobial curcumin nanofibrous membranes are produce by an electrospinning technique using the Eudragit RS 100 (C19H34ClNO6) polymer solution enriched with curcumin. The morphology and chemistry of the membrane are analyzed using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Kirby Bauer disk diffusion tests are carried out to examine the antibacterial effectiveness of the membrane. Experimental results show that the nanofibers produced are of uniform thickness morphology and curcumin is successfully incorporated into the nanofibrous mat, while no chemical bonding was observed between curcumin and the polymer. The antimicrobial curcumin nanofibrous membranes can be effectively applied as antimicrobial barrier in a wide variety of medical applications such as wound healing, scaffolds, and tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document