scholarly journals Complementary Roles of Orexin and Melanin-Concentrating Hormone in Feeding Behavior

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Jessica R. Barson ◽  
Irene Morganstern ◽  
Sarah F. Leibowitz

Transcribed within the lateral hypothalamus, the neuropeptides orexin/hypocretin (OX) and melanin-concentrating hormone (MCH) both promote palatable food intake and are stimulated by palatable food. While these two neuropeptides share this similar positive relationship with food, recent evidence suggests that this occurs through different albeit complementary effects on behavior, with OX promoting food seeking and motivation for palatable food and MCH functioning during ongoing food intake, reinforcing the consumption of calorically dense foods. Further differences are evident in their effects on physiological processes, which are largely opposite in nature. For example, activation of OX receptors, which is neuronally excitatory, promotes waking, increases energy expenditure, and enhances limbic dopamine levels and reward. In contrast, activation of MCH receptors, which is neuronally inhibitory, promotes paradoxical sleep, enhances energy conservation, reduces limbic dopamine, and increases depressive behavior. This review describes these different effects of the neuropeptides, developing the hypothesis that they stimulate the consumption of palatable food through excessive seeking in the case of OX and through excessive energy conservation in the case of MCH. It proposes that OX initiates food intake and subsequently stimulates MCH which then acts to prolong the consumption of palatable, energy-dense food.

Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 901
Author(s):  
Jennifer R. Sadler ◽  
Gita Thapaliya ◽  
Elena Jansen ◽  
Anahys H. Aghababian ◽  
Kimberly R. Smith ◽  
...  

(1) Background: The coronavirus (COVID-19) pandemic has caused disruptions to what people eat, but the pandemic’s impact on diet varies between individuals. The goal of our study was to test whether pandemic-related stress was associated with food intake, and whether relationships between stress and intake were modified by appetitive and cognitive traits. (2) Methods: We cross-sectionally surveyed 428 adults to examine current intake frequency of various food types (sweets/desserts, savory snacks, fast food, fruits, and vegetables), changes to food intake during the pandemic, emotional overeating (EOE), cognitive flexibility (CF), and COVID-19-related stress. Models tested associations of stress, EOE, and CF with food intake frequency and changes to intake. (3) Results: Models demonstrated that the positive relationship between stress and intake of sweets/desserts was stronger with higher EOE, while the positive relationship between stress and intake of chips/savory snacks was weaker with higher CF. Higher EOE was associated with greater risk of increased intake of palatable foods. (4) Conclusions: Findings suggest that emotional overeating may escalate stress-associated intake of high-sugar foods, and cognitive flexibility may attenuate stress-associated intake of high-fat foods. Differences in appetitive and cognitive traits may explain changes to and variability in food intake during COVID-19, and efforts to decrease emotional overeating and encourage cognitive flexibility could help lessen the effect of COVID-19-related stress on energy dense food intake.


2009 ◽  
Vol 296 (3) ◽  
pp. R469-R475 ◽  
Author(s):  
Benjamin Guesdon ◽  
Éric Paradis ◽  
Pierre Samson ◽  
Denis Richard

The brain melanin-concentrating hormone (MCH) system represents an anabolic system involved in energy balance regulation through influences exerted on the homeostatic and nonhomeostatic controls of food intake and energy expenditure. The present study was designed to further delineate the effect of the MCH system on energy balance regulation by assessing the actions of the MCH receptor 1 (MCHR1) agonism on both food intake and energy expenditure after intracerebroventricular (third ventricle) and intra-nucleus-accumbens-shell (intraNAcSH) injections of a MCHR1 agonist. Total energy expenditure and substrate oxidation were assessed following injections in male Wistar rats using indirect calorimetry. Food intake was also measured. Pair-fed groups were added to evaluate changes in thermogenesis that would occur regardless of the meal size and its thermogenic response. Using such experimental conditions, we were able to demonstrate that acute MCH agonism in the brain, besides its orexigenic effect, induced a noticeable change in the utilization of the main metabolic fuels. In pair-fed animals, MCH significantly reduced lipid oxidation when it was injected in the third ventricle. Such an effect was not observed following the injection of MCH in the NAcSH, where MCH nonetheless strongly stimulated appetite. The present results further delineate the influence of MCH on energy expenditure and substrate oxidation while confirming the key role of the NAcSH in the effects of the MCH system on food intake.


2002 ◽  
Vol 2002 ◽  
pp. 92-92 ◽  
Author(s):  
T. Kokkonen ◽  
J. Taponen ◽  
S. Alasuutari ◽  
M. Nousiainen ◽  
T. Anttila ◽  
...  

In ruminants plasma leptin is increased with increasing body fatness. Leptin acts on hypothalamus to decrease food intake and increase energy expenditure. It is possible that leptin has a key role in transition from pregnancy to lactation of dairy cows. The objective of the present work was to investigate the pattern of plasma leptin concentration, as well as its relationship with other hormones and metabolites and dairy cow performance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joanna Moro ◽  
Catherine Chaumontet ◽  
Patrick C. Even ◽  
Anne Blais ◽  
Julien Piedcoq ◽  
...  

AbstractTo study, in young growing rats, the consequences of different levels of dietary protein deficiency on food intake, body weight, body composition, and energy balance and to assess the role of FGF21 in the adaptation to a low protein diet. Thirty-six weanling rats were fed diets containing 3%, 5%, 8%, 12%, 15% and 20% protein for three weeks. Body weight, food intake, energy expenditure and metabolic parameters were followed throughout this period. The very low-protein diets (3% and 5%) induced a large decrease in body weight gain and an increase in energy intake relative to body mass. No gain in fat mass was observed because energy expenditure increased in proportion to energy intake. As expected, Fgf21 expression in the liver and plasma FGF21 increased with low-protein diets, but Fgf21 expression in the hypothalamus decreased. Under low protein diets (3% and 5%), the increase in liver Fgf21 and the decrease of Fgf21 in the hypothalamus induced an increase in energy expenditure and the decrease in the satiety signal responsible for hyperphagia. Our results highlight that when dietary protein decreases below 8%, the liver detects the low protein diet and responds by activating synthesis and secretion of FGF21 in order to activate an endocrine signal that induces metabolic adaptation. The hypothalamus, in comparison, responds to protein deficiency when dietary protein decreases below 5%.


2018 ◽  
Vol 30 (9-10) ◽  
pp. 370-380 ◽  
Author(s):  
Caroline Gamalho da Silveira ◽  
Marlise Di Domenico ◽  
Paulo Hilário Nascimento Saldiva ◽  
Cláudia Ramos Rhoden

2019 ◽  
Vol 110 (1-2) ◽  
pp. 35-49 ◽  
Author(s):  
Talia Levitas-Djerbi ◽  
Dana Sagi ◽  
Ilana Lebenthal-Loinger ◽  
Tali Lerer-Goldshtein ◽  
Lior Appelbaum

Background: Hypothalamic neurotensin (Nts)-secreting neurons regulate fundamental physiological processes including metabolism and feeding. However, the role of Nts in modulation of locomotor activity, sleep, and arousal is unclear. We previously identified and characterized Nts neurons in the zebrafish hypothalamus. Materials and Methods: In order to study the role of Nts, nts mutant (nts–/–), and overexpressing zebrafish were generated. Results: The expression of both nts mRNA and Nts protein was reduced during the night in wild-type zebrafish. Behavioral assays revealed that locomotor activity was decreased during both day and night, while sleep was increased exclusively during the nighttime in nts–/– larvae. Likewise, inducible overexpression of Nts increased arousal in hsp70:Gal4/uas:Nts larvae. Furthermore, the behavioral response to light-to-dark transitions was reduced in nts–/– larvae. In order to elucidate potential contenders that may mediate Nts action on these behaviors, we profiled the transcriptome of 6 dpf nts–/– larvae. Among other genes, the expression levels of melanin-concentrating hormone receptor 1b were increased in nts–/– larvae. Furthermore, a portion of promelanin-concentrating hormone 1 (pmch1) and pmch2 neurons expressed the nts receptor. In addition, expression of the the two zebrafish melanin-concentrating hormone (Mch) orthologs, Mch1 and Mch2, was increased in nts–/– larvae. Conclusion: These results show that the Nts and Mch systems interact and modulate locomotor activity and arousal.


1998 ◽  
Vol 76 (2) ◽  
pp. 237-241 ◽  
Author(s):  
L J Martin ◽  
PJH Jones ◽  
R V Considine ◽  
W Su ◽  
N F Boyd ◽  
...  

To investigate whether circulating leptin levels are associated with energy expenditure in healthy humans, doubly labeled water energy measurements and food intake assessment were carried out in 27 women (mean age, 48.6 years; weight, 61.9 kg; body mass index, 23.2). Energy expenditure was determined over 13 days. Food intake was measured by 7-day food records. Leptin was measured by radioimmunoassay. Leptin level was strongly associated with percentage body fat (r = 0.59; p < 0.001), fat mass (r = 0.60; p < 0.001), and body mass index (r = 0.41; p = 0.03), but no correlation was observed with energy expenditure (r = 0.02; p = 0.93). After controlling for percentage body fat, a positive association of leptin level with energy expenditure of marginal significance (p = 0.06) was observed. There were no significant univariate associations of age, physical activity, lean body mass, height, or dietary variables with leptin level. When controlling for body fat, a significant positive correlation was observed for percent energy from carbohydrate and negative correlations with dietary fat and alcohol intake. These findings confirm previous associations between leptin and body fat content and suggest a relationship between serum leptin and energy expenditure level in healthy humans.Key words: leptin, energy expenditure, body composition, diet.


Sign in / Sign up

Export Citation Format

Share Document