scholarly journals Development of Activated Carbon from Cotton Fibre Waste as Potential Mercury Adsorbent: Kinetic and Equilibrium Studies

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jatindra N. Bhakta ◽  
Piyali Bhakta Majumdar ◽  
Yukihiro Munekage

The study attempted to develop the activated carbon of cotton fibre (ACCF) from cotton waste as a high Hg2+adsorbent media and characterize physicochemical properties using scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS) and Hg2+adsorption kinetic by batch adsorption study with the function of contact time, solution pH, dosages of ACCF, and Hg concentration. The SEM-EDS study revealed that ACCF is composed of carbon (95.1%) and phosphorus pentoxide (4.9%). Obtained results of adsorption kinetics showed that 15 min of contact time is required to achieve the equilibrium state and wide range of pH (4.08–7) is favourable for maximum Hg adsorption. The Hg2+adsorption capacity showed a decreasing trend with increasing dose of ACCF, whereas a reverse response of adsorption capacity was pronounced with increasing Hg concentration. The data was well described by Freundlich isotherm model and determined the high Hg2+adsorption capacity of ACCF (169.2 mg/g). To our knowledge, the application of ACCF in removing Hg2+is the first study. High Hg2+adsorption capacity, economic feasibility, availability of cotton fibre waste, and simple preparation method concluded that it could be used as a novel low-cost and environmentally sound adsorbent media for removing high rate of Hg2+from aqueous phase.

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3839
Author(s):  
Nandhini Sureshkumar ◽  
Samiha Bhat ◽  
Shwetha Srinivasan ◽  
Nirmala Gnanasundaram ◽  
Murugesan Thanapalan ◽  
...  

A liquid-solid circulating fluidized bed (LSCFB) helps to overcome the shortcomings of conventional fluidized beds by using a particle separation and return system as an integral part of the overall reactor configuration. Batch adsorption experiments were carried out for the removal of phenol from a synthetically prepared solution using fresh activated-carbon-coated glass beads. The morphological features and surface chemistry of the adsorbent were analyzed via SEM and FTIR techniques. The adsorbent dosage, contact time and temperature were varied along with solution pH to assess their effects on the adsorbent performance for phenol removal. Isotherm modeling showed that the phenol removal using the activated-carbon glass beads followed the Langmuir model. Effectively, it was observed at an adsorbent loading of 2.5 g/150 mL of feed volume and a contact time of 3 h produced an 80% efficiency in the batch study. Furthermore, on scaling it up to the column, the desired 98% phenol-removal efficiency was obtained with an adsorbent dosage of 250 g and contact time of 25 min. Adsorbent regeneration using 5% (v/v) ethanol showed a 64% desorption of phenol from the sorbent within 20 min in the LSCFB.


2017 ◽  
Vol 36 (1-2) ◽  
pp. 355-371 ◽  
Author(s):  
Fareeda Hayeeye ◽  
Qiming J Yu ◽  
Memoon Sattar ◽  
Watchanida Chinpa ◽  
Orawan Sirichote

Gelatin and activated carbon materials have been combined together to obtain a gelatin/activated carbon composite bead form which is ecofriendly, nontoxic, biocompatible, and inexpensive material. In this paper, gelatin/activated carbon adsorption for Pb2+ ions from aqueous solutions was studied experimentally under various conditions. The experimental conditions such as contact time, solution pH, and gelatin/activated carbon dosage were examined and evaluated by using batch adsorption experiments. The maximum adsorption capacity of gelatin/activated carbon for Pb2+ ions was obtained to be 370.37 mg g−1. This maximum capacity was comparable with that of commercial ion exchange resins and it was much higher than those of natural zeolites. The uptake process for Pb2+ ions was found to be relatively fast with 92.15% of the adsorption completed in about 5 min in batch conditions. The adsorption capacity was also strongly solution pH dependent. Adsorption was observed at pH value as low as 2.0 and maximum adsorption was achieved at a pH of approximately 5. The results indicated that the gelatin/activated carbon was effective to be used as an adsorbent for Pb2+ ions removal in wastewater treatment.


2013 ◽  
Vol 864-867 ◽  
pp. 710-714
Author(s):  
Piaw Phatai ◽  
Songkot Utara ◽  
Nantana Hatthapanit

The study aimed to investigate the adsorption efficiency of methyl violet (MV) dye on activated carbon (AC) derived from coffee residues. A batch adsorption study was performed to examine various contributory parameters including contact time, solution pH, adsorbent dose and initial dye concentration. The morphology of the AC was studied by means of scanning electron microscopy (SEM). The results showed that maximum adsorption of MV dye on activated carbon occurred with a contact time of 60 min, solution pH of 9.0 and adsorbent dose of 0.3 g. The equilibrium adsorption data were analysed using Freundlich and Temkin isotherms. The adsorption isotherm was found to follow the Freundlich isotherm. Adsorption behavior of MV dye follows mechanism of physical adsorption which is occurred by heterogeneous surface. The results indicate that the AC from coffee residues is a suitable adsorbent for the adsorption of dyes.


2003 ◽  
Vol 47 (1) ◽  
pp. 113-120 ◽  
Author(s):  
D.S. Chaudhary ◽  
S. Vigneswaran ◽  
V. Jegatheesan ◽  
H.H. Ngo ◽  
H. Moon ◽  
...  

Wastewater treatment has always been a major concern in the developed countries. Over the last few decades, activated carbon adsorption has gained importance as an alternative tertiary wastewater treatment and purification process. In this study, granular activated carbon (GAC) adsorption was evaluated in terms of total organic carbon (TOC) removal from low strength synthetic wastewater. This paper provides details on adsorption experiments conducted on synthetic wastewater to develop suitable adsorption isotherms. Although the inorganics used in the synthetic wastewater solution had an overall unfavourable effect on adsorption of organics, the GAC adsorption system was found to be effective in removing TOC from the wastewater. This study showed that equation of state (EOS) theory was able to fit the adsorption isotherm results more precisely than the most commonly used Freundlich isotherm. Biodegradation of the organics with time was the most crucial and important aspect of the system and it was taken into account in determining the isotherm parameters. Initial organic concentration of the wastewater was the determining factor of the model parameters, and hence the isotherm parameters were determined covering a wide range of initial organic concentrations of the wastewater. As such, the isotherm parameters derived using the EOS theory could predict the batch adsorption and fixed bed adsorption results of the multi-component system successfully. The isotherm parameters showed a significant effect on the determination of the mass transfer coefficients in batch and fixed bed systems.


2017 ◽  
Vol 29 (1) ◽  
pp. 9-13
Author(s):  
Masuma Sultana Ripa ◽  
Rafat Mahmood ◽  
Sabrina Khan ◽  
Easir A Khan

Adsorption separation of phenol from aqueous solution using activated carbon was investigated in this work. The adsorbent was prepared from coconut shell and activated by physical activation method. The coconut shell was first carbonized at 800°C under nitrogen atmosphere and activated by CO2 at the same temperature for one hour. The prepared activated carbon was characterized by Scanning Electron Microscope (SEM) and BET Surface Analyzer and by the determination of iodine number as well as Boehm titration. The iodine number indicates the degree of relative activation of the adsorbent. The equilibrium adsorption isotherm phenol from aqueous solution was performed using liquid phase batch adsorption experiments. The effect of experimental parameters including solution pH, agitation time, particle size, temperature and initial concentration was investigated. The equilibrium data was analyzed using Langmuir and Freundlich adsorption model to describe the adsorption isotherm and estimate the adsorption isotherm parameters. The results indicate the potential use of the adsorbent for removal of phenol from the aqueous solution.Journal of Chemical Engineering, Vol. 29, No. 1, 2017: 9-13


Author(s):  
Y. Yerima ◽  
I. Eiroboyi ◽  
I. Eiroboyi

Biomass-based activated carbon has received large attention due to its excellent characteristics such as inexpensiveness, good absorption behaviour, and potential to reduce strong dependence towards non-renewable precursors. The potential use of Palm Kernel Shell in modified activated carbon was evaluated by using the Response Surface Methodology. In this study, a 23 three-level Central Composite Design (CCD) was used to develop a statistical model for the optimization of process variables, contact time (10-130mins) X1, pH (5.0 – 8.0) X2, and adsorbent dose (0.4 -5.0g) X3. The investigation shows that Ethylene Di-Amine Tetra-Acetic Acid modified activated carbon prepared from Palm Kernel Shell is a promising adsorbent for the removal of copper ions from aqueous solutions over a wide range of concentrations with an optimized efficiency of 99% at the solution pH of 7.2, contact time of 70 minutes and adsorbent dose of 2.1g/L. The adsorption results are in line with the linear and quadratic model representation, which is evident from the models for optimization of copper ions.


Jurnal Kimia ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
W. P. Utoo1 ◽  
E. Santoso ◽  
G. Yuhaneka ◽  
A. I. Triantini ◽  
M. R. Fatqi ◽  
...  

The aim of this research is to get activated carbon from sugarcane bagasse with high adsorption capacity to Naphthol Yellow S and to know factors influencing the adsorption capacity. Activated carbon is prepared by incomplete combustion of sugracane bagasse. The resulting carbon is activated with H2SO4 with concentration variation of 0.5; 1.0; 1.5 and 2.0 M and is continued by calcination at 400 °C. The measurement of the surface area of ??activated carbon by the methylene blue method indicates that the activation process successfully extends the surface area of carbon from 31.87 m2/g before activation to 66-72 m2/g after activation. Activated carbon with concentration of 2.0 M H2SO4 showed the highest surface area of ??71.85 m2/g, however, the best adsorption was shown by activated carbon with a concentration of 0.5 M H2SO4 with the adsorption capacity of 83.93%. The adsorption test showed that the best amount of adsorbent was 0.2 g with contact time for 30 minutes. Prolonged contact time can decrease the amount of Naphthol Yellow S adsorbed. The best adsorption test result was shown by sample with activator concentration of 0,5 M, mass of 0,2 g and contact time of 30 min with adsorption capacity 95,81% or amount of dye adsorbed equal to 143,72 mg/g. The adsorption study also showed that the entire Naphthol Yellow S adsorption process followed the Langmuir isothemal adsorption model. Qualitative testing of real batik waste indicates that activated carbon can reduce the dyes waste containing Naphthol Yellow Sexhibited by the color of batik waste which is more faded.  


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3081 ◽  
Author(s):  
Nurul Aida Nordin ◽  
Norizah Abdul Rahman ◽  
Abdul Halim Abdullah

Heavy metal pollution, such as lead, can cause contamination of water resources and harm human life. Many techniques have been explored and utilized to overcome this problem, with adsorption technology being the most common strategies for water treatment. In this study, carbon nanofibers, polyacrylonitrile (PAN)/sago lignin (SL) carbon nanofibers (PAN/SL CNF) and PAN/SL activated carbon nanofibers (PAN/SL ACNF), with a diameter approximately 300 nm, were produced by electrospinning blends of polyacrylonitrile and sago lignin followed by thermal and acid treatments and used as adsorbents for the removal of Pb(II) ions from aqueous solutions. The incorporation of biodegradable and renewable SL in PAN/SL blends fibers produces the CNF with a smaller diameter than PAN only but preserves the structure of CNF. The adsorption of Pb(II) ions on PAN/SL ACNF was three times higher than that of PAN/SL CNF. The enhanced removal was due to the nitric acid treatment that resulted in the formation of surface oxygenated functional groups that promoted the Pb(II) ions adsorption. The best-suited adsorption conditions that gave the highest percentage removal of 67%, with an adsorption capacity of 524 mg/g, were 40 mg of adsorbent dosage, 125 ppm of Pb(II) solution, pH 5, and a contact time of 240 min. The adsorption data fitted the Langmuir isotherm and the pseudo-second-order kinetic models, indicating that the adsorption is a monolayer, and is governed by the availability of the adsorption sites. With the adsorption capacity of 588 mg/g, determined via the Langmuir isotherm model, the study demonstrated the potential of PAN/SL ACNFs as the adsorbent for the removal of Pb(II) ions from aqueous solution.


2011 ◽  
Vol 8 (2) ◽  
pp. 803-808 ◽  
Author(s):  
U. V. Ladhe ◽  
S. K. Wankhede ◽  
V. T. Patil ◽  
P. R. Patil

Adsorptions of Erichrome Black T dye in aqueous solution on cotton stem activated carbon have been studied as a function of contact time, concentration and pH. Effect of various experimental parameters has been investigated at 39±1°C under batch adsorption technique. The result shows that cotton stem activated carbon adsorbs dye to a sufficient extent. The physicochemical characterization and chemical kinetics was also examined for the same dye. The overall result shows that it can be fruitfully used for the removal of dye from wastewaters.


2012 ◽  
Vol 164 ◽  
pp. 297-301 ◽  
Author(s):  
Wei Fang Dong ◽  
Li Hua Zang ◽  
Qing Chao Gong ◽  
Cun Cun Chen ◽  
Cai Hong Zheng ◽  
...  

Low cost carbonaceous materials were evaluated for their ability to remove phenol from wastewater. The effects of adsorbents dosage, contact time and maximum adsorption capacity were investigated for granular activated carbon, powdered activated carbon, petroleum coke and multi-walled carbon nanotube (MWNT). Equilibrium studies were conducted in 50mg/L initial phenol concentration, solution pH of 5 and at temperature of 23°C. The results showed the adsorption process was fast and it reached equilibrium in 3 h. Petroleum coke and MWNT had poor adsorption which could reach the removal efficiency of phenol with 43.18% and 36.64% respectively. The granular activated carbon possessed good adsorption ability to phenol with 96.40% at the optimum dosage 5g and optimum time 90min.The powdered activated carbon was an effective adsorbent with a maximum adsorption capacity of 42.32 mg/g.


Sign in / Sign up

Export Citation Format

Share Document