scholarly journals Effects of Nanoparticle Hydroxyapatite on Growth and Antioxidant System in Pakchoi (Brassica chinensis L.) from Cadmium-Contaminated Soil

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhangwei Li ◽  
Jiaai Huang

The effects of nanoscale particle hydroxyapatite (nHAP) on biomass, Cd uptake, the level of chlorophyll, vitamin C, malondialdehyde (MDA), and the activities of antioxidant enzymes, including SOD, CAT, and POD in pakchoi in Cd-contaminated soil, were evaluated by conducting pot experiment. Results showed that, by application of the 5 g·kg−1, 10 g·kg−1, 20 g·kg−1, and 30 g·kg−1nHAP in 10 mg·kg−1Cd-contaminated soil, the biomass of plant increased by 7.97%, 13.21%, 19.53%, and 20.23%, respectively. In addition, the reduction of Cd in shoots was 27.12%, 44.20%, 50.91%, and 62.36% compared to control samples. It was found that the supplement of the nHAP can increase the level of chlorophyll and vitamin C and decrease the level of MDA in plant shoots. Furthermore, the increment activities of SOD, CAT, and POD can be observed after addition of nHAP in Cd-contaminated soil. The results confirmed that nHAP can be applied to reduce the plant uptake of Cd and resist the Cd stress in the plant in Cd-contaminated soil.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Li Chen ◽  
Dan Wang ◽  
Chan Long ◽  
Zheng-xu Cui

AbstractThis study investigated the effect of ethylenediamine-N,N′-disuccinic acid (EDDS), oxalic acid (OA), and citric acid (CA) on phytoextraction of U- and Cd-contaminated soil by Z. pendula. In this study, the biomass of tested plant inhibited significantly following treatment with the high concentration (7.5 mmol·kg−1) EDDS treatment. Maximum U and Cd concentration in the single plant was observed with the 5 mmol·kg−1 CA and 7.5 mmol·kg−1 EDDS treatment, respectively, whereas OA treatments had the lowest U and Cd uptake. The translocation factors of U and Cd reached the maximum in the 5 mmol·kg−1 EDDS. The maximum bioaccumulation of U and Cd in the single plants was 1032.14 µg and 816.87 µg following treatment with 5 mmol·kg−1 CA treatment, which was 6.60- and 1.72-fold of the control groups, respectively. Furthermore, the resultant rank order for available U and Cd content in the soil was CA > EDDS > OA (U) and EDDS > CA > OA (Cd). These results suggested that CA could greater improve the capacity of phytoextraction using Z. pendula in U- and Cd- contaminated soils.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1698
Author(s):  
Wan Zhang ◽  
Yunlin Zhao ◽  
Zhenggang Xu ◽  
Huimin Huang ◽  
Jiakang Zhou ◽  
...  

Broussonetia papyrifera is a widely distributed economic tree species, and it is also a pioneer species in adverse environments. In order to investigate the growth and adaptation mechanism of B. papyrifera under cadmium (Cd) contaminated soil, potted experiments were used with six-month treatments to study Cd enrichment and the transportation, morphological and physiological characteristics of B. papyrifera tissues. The results showed that Cd mainly accumulated in the root when the Cd concentration was high (14.71 mg/kg), and the root biomass was significantly reduced by Cd stress although Cd promoted the growth of seedlings. The bioconcentration factors (BCF) increased with the increase in Cd concentration, and reached the maximum value of 0.21 at 14.71 mg/kg. On the contrary, translocation factor (TF) decreased significantly at 8.28–14.71 mg/kg Cd concentration. Cd not only led to the loose arrangement of the xylem vessels of leaves, but also changed the chlorophyll content. However, B. papyrifera could synthesize organic solutes such as soluble protein, soluble sugar and proline to reduce the intracellular osmotic potential. Our study proved that B. papyrifera has good tolerance to Cd stress and is a pioneer tree species for soil and ecological environment restoration.


2019 ◽  
Vol 21 (1) ◽  
pp. 278 ◽  
Author(s):  
Jinliang Huang ◽  
Xiaolu Wu ◽  
Feifei Tian ◽  
Qi Chen ◽  
Pengrui Luo ◽  
...  

Phytoremediation soil polluted by cadmium has drawn worldwide attention. However, how to improve the efficiency of plant remediation of cadmium contaminated soil remains unknown. Previous studies showed that nitrogen (N) significantly enhances cadmium uptake and accumulation in poplar plants. In order to explore the important role of nitrogen in plants’ responses to cadmium stress, this study investigates the poplar proteome and phosphoproteome difference between Cd stress and Cd + N treatment. In total, 6573 proteins were identified, and 5838 of them were quantified. With a fold-change threshold of > 1.3, and a p-value < 0.05, 375 and 108 proteins were up- and down-regulated by Cd stress when compared to the control, respectively. Compared to the Cd stress group, 42 and 89 proteins were up- and down-regulated by Cd + N treatment, respectively. Moreover, 522 and 127 proteins were up- and down-regulated by Cd + N treatment compared to the CK group. In addition, 1471 phosphosites in 721 proteins were identified. Based on a fold-change threshold of > 1.2, and a p-value < 0.05, the Cd stress up-regulated eight proteins containing eight phosphosites, and down-regulated 58 proteins containing 69 phosphosites, whereas N + Cd treatment up-regulated 86 proteins containing 95 phosphosites, and down-regulated 17 proteins containing 17 phosphosites, when compared to Cd stress alone. N + Cd treatment up-regulated 60 proteins containing 74 phosphosites and down-regulated 37 proteins containing 42 phosphosites, when compared to the control. Several putative responses to stress proteins, as well as transcriptional and translational regulation factors, were up-regulated by the addition of exogenous nitrogen following Cd stress. Especially, heat shock protein 70 (HSP70), 14-3-3 protein, peroxidase (POD), zinc finger protein (ZFP), ABC transporter protein, eukaryotic translation initiation factor (elF) and splicing factor 3 B subunit 1-like (SF3BI) were up-regulated by Cd + N treatment at both the proteome and the phosphoproteome levels. Combing the proteomic data and phosphoproteomics data, the mechanism by which exogenous nitrogen can alleviate cadmium toxicity in poplar plants was explained at the molecular level. The results of this study will establish the solid molecular foundation of the phytoremediation method to improve cadmium-contaminated soil.


Toxics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 182
Author(s):  
Ruchi Bansal ◽  
Swati Priya ◽  
Harsh Kumar Dikshit ◽  
Sherry Rachel Jacob ◽  
Mahesh Rao ◽  
...  

Cadmium (Cd) is a hazardous heavy metal, toxic to our ecosystem even at low concentrations. Cd stress negatively affects plant growth and development by triggering oxidative stress. Limited information is available on the role of iron (Fe) in ameliorating Cd stress tolerance in legumes. This study assessed the effect of Cd stress in two lentil (Lens culinaris Medik.) varieties differing in seed Fe concentration (L4717 (Fe-biofortified) and JL3) under controlled conditions. Six biochemical traits, five growth parameters, and Cd uptake were recorded at the seedling stage (21 days after sowing) in the studied genotypes grown under controlled conditions at two levels (100 μM and 200 μM) of cadmium chloride (CdCl2). The studied traits revealed significant genotype, treatment, and genotype × treatment interactions. Cd-induced oxidative damage led to the accumulation of hydrogen peroxide (H2O2) and malondialdehyde in both genotypes. JL3 accumulated 77.1% more H2O2 and 75% more lipid peroxidation products than L4717 at the high Cd level. Antioxidant enzyme activities increased in response to Cd stress, with significant genotype, treatment, and genotype × treatment interactions (p < 0.01). L4717 had remarkably higher catalase (40.5%), peroxidase (43.9%), superoxide dismutase (31.7%), and glutathione reductase (47.3%) activities than JL3 under high Cd conditions. In addition, L4717 sustained better growth in terms of fresh weight and dry weight than JL3 under stress. JL3 exhibited high Cd uptake (14.87 mg g−1 fresh weight) compared to L4717 (7.32 mg g−1 fresh weight). The study concluded that the Fe-biofortified lentil genotype L4717 exhibited Cd tolerance by inciting an efficient antioxidative response to Cd toxicity. Further studies are required to elucidate the possibility of seed Fe content as a surrogacy trait for Cd tolerance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ertan Yildirim ◽  
Melek Ekinci ◽  
Metin Turan ◽  
Güleray Ağar ◽  
Atilla Dursun ◽  
...  

AbstractCadmium (Cd) is a toxic and very mobile heavy metal that can be adsorbed and uptaken by plants in large quantities without any visible sign. Therefore, stabilization of Cd before uptake is crucial to the conservation of biodiversity and food safety. Owing to the high number of carboxyl and phenolic hydroxyl groups in their structure, humic substances form strong bonds with heavy metals which makes them perfect stabilizing agents. The aim of this study was to determine the effects of humic and fulvic acid (HA + FA) levels (0, 3500, 5250, and 7000 mg/L) on alleviation of Cadmium (Cd) toxicity in garden cress (Lepidium sativum) contaminated with Cd (CdSO4.8H2O) (0, 100, and 200 Cd mg/kg) under greenhouse conditions. Our results showed that, Cd stress had a negative effect on the growth of garden cress, decreased leaf fresh, leaf dry, root fresh and root dry weights, leaf relative water content (LRWC), and mineral content except for Cd, and increased the membrane permeability (MP) and enzyme (CAT, SOD and POD) activity. However, the HA + FA applications decreased the adverse effects of the Cd pollution. At 200 mg/kg Cd pollution, HA + FA application at a concentration of 7000 mg/L increased the leaf fresh, leaf dry, root fresh, root dry weights, stem diameter, leaf area, chlorophyll reading value (CRV), MP, and LRWC values by 262%, 137%, 550%,133%, 92%, 104%, 34%, 537%, and 32% respectively, compared to the control. Although the highest H2O2, MDA, proline and sucrose values were obtained at 200 mg/L Cd pollution, HA + FA application at a concentration of 7000 mg/L successfully alleviated the deleterious effects of Cd stress by decreasing H2O2, MDA, proline, and sucrose values by 66%, 68%, 70%, and 56%, respectively at 200 mg/kg Cd pollution level. HA + FA application at a concentration of 7000 mg/L successfully mitigated the negative impacts of Cd pollution by enhanced N, P, K, Ca, Mg, Fe, Mn, Cu, Mn, Zn, and B by 75%, 23%, 84%, 87%, 40%, 85%, 143%, 1%, 65%, and 115%, respectively. In addition, HA + FA application at a concentration of 7000 mg/L successfully reduced Cd uptake by 95% and Cl uptake by 80%. Considering the plant growth parameters, the best results were determined when HA + FA concentration was 7000 mg/L. We have shown that, it is critical to apply a humic substance with high percentage of FA, which was 10% in this study, to mitigate the adverse effects of heavy metal stress on plant growth. In conclusion, the application of HA + FA may be suggested as an effective solution for reducing the Cd uptake of the plants by stabilizing Cd in soil and preventing translocation of Cd from the roots of plant to its shoot and leaves.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1180
Author(s):  
Jan Skála ◽  
Radim Vácha ◽  
Jarmila Čechmánková

The paired Fluvisol and cereal samples in both the field screening and controlled experiments are reported to elucidate the soil–crop relationship for As, Cd, and Pb in relation to changing contamination levels. Significant varietal differences in plant uptake were observed for crop type (barley, triticale) and the harvested part of the crop (oat shoots and grain). When parametrizing the stepwise regression models, the inclusion of soil properties often improved the performance of soil–crop models but diverse critical soil parameters were retained in the model for individual metal(loid)s. The pH value was often a statistically significant variable for Cd uptake. For As and Pb, the more successful model fit was achieved using the indicators of quantity or quality of soil organic matter, but always with lower inherent model reliability compared to Cd. Further, a single correlation analysis was used to investigate the relationship between extractable metal concentrations in soil solution and their crop accumulation. For Cd, there were strong intercorrelations among single extractions, the NH4NO3 extraction stood out with perfect correlation with plant uptake in both experiments. For As and Pb, the CaCl2 and Na2EDTA solutions outperformed other single extractions and were the better choice for the assessment of depositional fluvial substrates.


2018 ◽  
Vol 127 ◽  
pp. 64-73 ◽  
Author(s):  
Kun Wang ◽  
Yuhui Qiao ◽  
Huiqi Zhang ◽  
Shizhong Yue ◽  
Huafen Li ◽  
...  

2004 ◽  
Vol 23 (1) ◽  
pp. 29-34 ◽  
Author(s):  
G Kadikoylu ◽  
Z Bolaman ◽  
S Demir ◽  
M Balkaya ◽  
N Akalin ◽  
...  

Cisplatin-induced nephrotoxicity is associated with an increase in lipid peroxidation and oxygen free radicals in rat kidneys. In this study, the effects of desferrioxamine were compared to vitamin C and E on cisplatin-induced lipid peroxidation and antioxidant enzyme activities in rat kidneys. Rats were divided into five groups, with 15 Wistar rats in each group. In the control group, rats received 1 mL/100 g isotonic saline solution intraperitoneally (i.p.). In Group II, 10 mg/kg cisplatin i.p. was injected to rats. Thirty minutes before the same dosage of cisplatin administration, 100 mg/kg i.p. vitamin C or E was given to rats in groups III and IV, respectively. Rats in Group V received 250 mg/kg desferrioxamine i.p., before the same dose of cisplatin administration. All rats were killed by cervical dislocation after 72 hours. The kidneys were immediately removed and washed in cold saline. Spectrophotometric method was used for all analyses. While catalase, glutathione reductase (GR), and super oxide dismutase (SOD) levels were found to be significantly decreased (P B < 0.001), malondialdehyde (MDA) (P < 0.05) and hydrogen peroxide (H2O2) (P < 0.001) levels were significantly increased in the cisplatin group when compared to the controls. MDA levels were decreased by desferrioxamine (P < 0.005) as well as vitamin C and E (P < 0.05 and P < 0.001, respectively). These three compounds induced a significant increase in SOD levels (P B < 0.05), but only in the vitamin C group, were SOD levels not significantly different than the levels of the controls (P > 0.05). In the desferrioxamine (P < 0.05), vitamin C and E groups (P < 0.001 for both), the cisplatin elevated H2O2 levels were decreased. None of these drugs had any effect on GR and catalase levels (P > 0.05). Desferrioxamine is useful to prevent cisplatin-induced lipid peroxidation, however, vitamin C and E are more effective on antioxidant enzymes than desferrioxamine.


Sign in / Sign up

Export Citation Format

Share Document