scholarly journals Effects of the Absorption Behaviour of ZnO Nanoparticles on Cytotoxicity Measurements

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Nigar Najim ◽  
Roshidah Rusdi ◽  
Ahmad Sazali Hamzah ◽  
Zurina Shaameri ◽  
Mazatulikhma Mat Zain ◽  
...  

ZnO absorbs certain wavelengths of light and this behavior is more pronounced for nanoparticles of ZnO. As many toxicity measurements rely on measuring light transmission in cell lines, it is essential to determine how far this light absorption influences experimental toxicity measurements. The main objective was to study the ZnO absorption and how this influenced the cytotoxicity measurements. The cytotoxicity of differently sized ZnO nanoparticles in normal and cancer cell lines derived from lung tissue (Hs888Lu), neuron-phenotypic cells (SH-SY5Y), neuroblastoma (SH-SY5Y), human histiocytic lymphoma (U937), and lung cancer (A549) was investigated. Our results demonstrate that the presence of ZnO affected the cytotoxicity measurements due to the absorption characteristic of ZnO nanoparticles. The data revealed that the ZnO nanoparticles with an average particle size of around 85.7 nm and 190 nm showed cytotoxicity towards U937, SH-SY5Y, differentiated SH-SY5Y, and Hs888Lu cell lines. No effect on the A549 cells was observed. It was also found that the cytotoxicity of ZnO was particle size, concentration, and time dependent. These studies are the first to quantify the influence of ZnO nanoparticles on cytotoxicity assays. Corrections for absorption effects were carried out which gave an accurate estimation of the concentrations that produce the cytotoxic effects.

2012 ◽  
Vol 454 ◽  
pp. 136-143 ◽  
Author(s):  
Guo Liang Liu ◽  
Yan Qi ◽  
Yi Min Zhu ◽  
Zhi Jun Ma

The infrared absorption behaviors of nano-MgO with different sizes have been investigated based on XRD and IR data. The blue shifts of infrared absorption peaks with the decrease of the particles size have been analyzed by constructing one-dimensional vibration model. Adopting the quantum physics analyzed method, we provide the reasonable explanations for the red shifts of infrared absorption peaks as the average particle size of nano-MgO powder is down to less than 50 nm.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Dinesh Patidar ◽  
Anusaiya Kaswan ◽  
N. S. Saxena ◽  
Kananbala Sharma

Monodispersed ZnO nanoparticles have been synthesised in ethylene glycol medium using zinc acetate and sodium hydroxide at room temperature through ultrasonic treatment. The monodispersed ZnO nanoparticles were characterized by XRD, TEM, SEM, and optical spectroscopy. The results indicate that ZnO shows the hexagonal wurtzite structure having 8 nm average particle size with the band gap of 3.93 eV. ZnO nanoparticles blended with P3HT show the improvement in the interchains and intrachains ordering as compared to pure P3HT. The power conversion efficiency of P3HT/ZnO solar cell is found to be 0.88%, which is comparable with the result obtained by other researchers.


2010 ◽  
Vol 158 ◽  
pp. 145-158 ◽  
Author(s):  
Guo Liang Liu ◽  
Yi Min Zhu ◽  
Zhi Jun Ma ◽  
Xin Fang

Nano-MgO powders with different size form 30 to 100 nm are prepared and measured by XRD and IR. FTIR results show that nano-MgO powder has abnormal infrared absorption behaviors compared with that of micron scale; and there exist blue shifts of infrared absorption peaks with the decrease of the particles size. But when the average particle size of nano-MgO powder is down to less than 50 nm, there are red shifts of infrared absorption peaks. The aim of the paper is to analyze the mechanism of IR absorption characteristic of MgO Nano-powder by a single- dimensional chain vibration model.


2017 ◽  
Vol 19 (1) ◽  
pp. 17
Author(s):  
Rodiah Nurbaya Sari ◽  
Nanda Saridewi ◽  
Shofwatunnisa Shofwatunnisa

Biosynthesis and characterization of ZnO Nanoparticles by the reduction method have been performed. This study aims to determine the ability of Caulerpa sp. as a reducing agent and stabilizer. Extract Caulerpa sp. was reacted with Zn(CH3COO)2.2H2O solution in variation concentration of 0.05, 0.1, and 0.15 M and the pH of the solution was conditioned with NaOH 0.1 M added became 7, 8, 9. Characterization of ZnO nanoparticles was performed for functional group analysis (FTIR), surface morphology and particle distribution (SEM), knowing the phase type (XRD), and particle size and particle size (PSA). The result of phase analysis by XRD shows that the synthesis of ZnO nanoparticles using green seaweed extract Caulerpa sp. has been successfully performed with the formation of the optimum ZnO nanoparticles 0.15 M at pH 8. The ZnO nanoparticles had a relatively similar particle size distribution with an average particle size of 370.72 nm. Based on FTIR results it was known that the compound suspected to act as a bioreductor and stabilizer agent in the synthesis of ZnO nanoparticles was a protein


NANO ◽  
2009 ◽  
Vol 04 (04) ◽  
pp. 225-232 ◽  
Author(s):  
TALAAT M. HAMMAD ◽  
JAMIL K. SALEM ◽  
ROGER G. HARRISON

Zinc oxide ( ZnO ) and yttrium-doped ZnO nanoparticles with particle size in the nanometer range have been successfully synthesized by the alkali precipitation method. The nanoparticle size and morphology have been investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM). The average particle size of Y-doped ZnO nanoparticles is about 17–29 nm. The absorption and photoluminescence (PL) spectra of the undoped and doped ZnO nanoparticles were also investigated. The optical band gap of ZnO nanoparticles can be tuned from 3.27 to 3.40 eV with increasing yittrium doping levels from 0 to 5%. The nanoparticles gave two emission peaks, one at around 376 nm and the other at 500 nm.


1970 ◽  
Vol 26 (1) ◽  
pp. 16 ◽  
Author(s):  
S Balasubramanian ◽  
Rajkumar Rajkumar ◽  
K K Singh

Experiment to identify ambient grinding conditions and energy consumed was conducted for fenugreek. Fenugreek seeds at three moisture content (5.1%, 11.5% and 17.3%, d.b.) were ground using a micro pulverizer hammer mill with different grinding screen openings (0.5, 1.0 and 1.5 mm) and feed rate (8, 16 and 24 kg h-1) at 3000 rpm. Physical properties of fenugreek seeds were also determined. Specific energy consumptions were found to decrease from 204.67 to 23.09 kJ kg-1 for increasing levels of feed rate and grinder screen openings. On the other hand specific energy consumption increased with increasing moisture content. The highest specific energy consumption was recorded for 17.3% moisture content and 8 kg h-1 feed rate with 0.5 mm screen opening. Average particle size decreased from 1.06 to 0.39 mm with increase of moisture content and grinder screen opening. It has been observed that the average particle size was minimum at 0.5 mm screen opening and 8 kg h-1 feed rate at lower moisture content. Bond’s work index and Kick’s constant were found to increase from 8.97 to 950.92 kWh kg-1 and 0.932 to 78.851 kWh kg-1 with the increase of moisture content, feed rate and grinder screen opening, respectively. Size reduction ratio and grinding effectiveness of fenugreek seed were found to decrease from 4.11 to 1.61 and 0.0118 to 0.0018 with the increase of moisture content, feed rate and grinder screen opening, respectively. The loose and compact bulk densities varied from 219.2 to 719.4 kg m-3 and 137.3 to 736.2 kg m-3, respectively.  


2020 ◽  
Vol 27 (22) ◽  
pp. 3623-3656 ◽  
Author(s):  
Bruno Fonseca-Santos ◽  
Patrícia Bento Silva ◽  
Roberta Balansin Rigon ◽  
Mariana Rillo Sato ◽  
Marlus Chorilli

Colloidal carriers diverge depending on their composition, ability to incorporate drugs and applicability, but the common feature is the small average particle size. Among the carriers with the potential nanostructured drug delivery application there are SLN and NLC. These nanostructured systems consist of complex lipids and highly purified mixtures of glycerides having varying particle size. Also, these systems have shown physical stability, protection capacity of unstable drugs, release control ability, excellent tolerability, possibility of vectorization, and no reported production problems related to large-scale. Several production procedures can be applied to achieve high association efficiency between the bioactive and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes Lipid-based nanocarriers (LNCs) versatile delivery system for various routes of administration. The route of administration has a significant impact on the therapeutic outcome of a drug. Thus, the non-invasive routes, which were of minor importance as parts of drug delivery in the past, have assumed added importance drugs, proteins, peptides and biopharmaceuticals drug delivery and these include nasal, buccal, vaginal and transdermal routes. The objective of this paper is to present the state of the art concerning the application of the lipid nanocarriers designated for non-invasive routes of administration. In this manner, this review presents an innovative technological platform to develop nanostructured delivery systems with great versatility of application in non-invasive routes of administration and targeting drug release.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mohammad Hossain Shariare ◽  
Tonmoy Kumar Mondal ◽  
Hani Alothaid ◽  
Md. Didaruzzaman Sohel ◽  
MD Wadud ◽  
...  

Aim: EPAS (evaporative precipitation into aqueous solution) was used in the current studies to prepare azithromycin nanosuspensions and investigate the physicochemical characteristics for the nanosuspension batches with the aim of enhancing the dissolution rate of the nanopreparation to improve bioavailability. Methods: EPAS method used in this study for preparing azithromycin nanosuspension was achieved through developing an in-house instrumentation method. Particle size distribution was measured using Zetasizer Nano S without sample dilution. Dissolved azithromycin nanosuspensions were also compared with raw azithromycin powder and commercially available products. Total drug content of nanosuspension batches were measured using an Ultra-Performance Liquid Chromatography (UPLC) system with Photodiode Array (PDA) detector while residual solvent was measured using gas chromatography (GC). Results: The average particle size of azithromycin nanosuspension was 447.2 nm and total drug content was measured to be 97.81% upon recovery. Dissolution study data showed significant increase in dissolution rate for nanosuspension batch when compared to raw azithromycin and commercial version (microsuspension). The residual solvent found for azithromycin nanosuspension is 0.000098023 mg/ mL or 98.023 ppb. Conclusion: EPAS was successfully used to prepare azithromycin nanoparticles that exhibited significantly enhanced dissolution rate. Further studies are required to scale up the process and determine long term stability of the nanoparticles.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2003
Author(s):  
Wei Xu ◽  
Jintao Wei ◽  
Zhengxiong Chen ◽  
Feng Wang ◽  
Jian Zhao

The type and fineness of a filler significantly affect the performance of an asphalt mixture. There is a lack of specific research on the effects of filler fineness and dust from aggregates on the properties of epoxy asphalt (EA) mixtures. The effects of aggregate dust and mineral powder on the properties of an EA mixture were evaluated. These filler were tested to determine their fineness, specific surface area and mineral composition. The effects of these fillers on the EA mastic sample and mixture were evaluated. The morphology of the EA mastic samples was analyzed using scanning electron microscopy (SEM). The effects of the fillers on the Marshall stability, tensile strength and fatigue performance of the EA mixture were evaluated. The dust from the aggregates exhibited an even particle size distribution, and its average particle size was approximately 20% of that of the mineral powder. The SEM microanalysis showed that the EA mastic sample containing relatively fine dust formed a tight and dense interfacial bonding structure with the aggregate. The EA mixture sample containing filler composed of dust from aggregate had a significantly higher strength and longer fatigue life than that of the EA sample containing filler composed of mineral powder.


2021 ◽  
Vol 13 (15) ◽  
pp. 8122
Author(s):  
Shijie Tian ◽  
Weiqiang Tan ◽  
Xinyuan Wang ◽  
Tingting Li ◽  
Fanhao Song ◽  
...  

Surface activity of humic acid (HA) and its six sub-fractions isolated from forest soil were characterized by surface tension measurements, dynamic light scattering, and laser doppler electrophoresis. The surface tension of HA and its sub-fractions reduced from 72.4 mN·m−1 to 36.8 mN·m−1 in exponential model with the increasing concentration from 0 to 2000 mg·L−1. The critical micelle concentration (CMC) and Z-average particle size ranged from 216–1024 mg·L−1 and 108.2–186.9 nm for HA and its sub-fractions, respectively. The CMC have related with alkyl C, O-alkyl C, aromatic C, and carbonyl C (p < 0.05), respectively, and could be predicted with the multiple linear regression equation of CMC, CMC = 18896 − 6.9 × C-296 × alkyl C-331 × aromatic C-17019 × H/C + 4054 × HB/HI (p < 0.05). The maximum particle size was 5000 nm after filtered by a membrane with pore size of 450 nm, indicating HA and its sub-fractions could progressed self-assembly at pH 6.86. The aggregate sizes of number-base particle size distributions were mainly in six clusters including 2 ± 1 nm, 5 ± 2 nm, 10 ± 3 nm, 21 ± 8 nm, 40 ± 10 nm, and >50 nm analyzed by Gaussian model that maybe due to the inconsistency of the components and structures of the HA sub-fractions, requiring further study. It is significance to explore the surface activity of HA and its sub-fractions, which is helpful to clarify the environmental behavior of HA.


Sign in / Sign up

Export Citation Format

Share Document