scholarly journals Cell Death-Associated Molecular-Pattern Molecules: Inflammatory Signaling and Control

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Beatriz Sangiuliano ◽  
Nancy Marcela Pérez ◽  
Dayson F. Moreira ◽  
José E. Belizário

Apoptosis, necroptosis, and pyroptosis are different cellular death programs characterized in organs and tissues as consequence of microbes infection, cell stress, injury, and chemotherapeutics exposure. Dying and death cells release a variety of self-proteins and bioactive chemicals originated from cytosol, nucleus, endoplasmic reticulum, and mitochondria. These endogenous factors are named cell death-associated molecular-pattern (CDAMP), damage-associated molecular-pattern (DAMP) molecules, and alarmins. Some of them cooperate or act as important initial or delayed inflammatory mediators upon binding to diverse membrane and cytosolic receptors coupled to signaling pathways for the activation of the inflammasome platforms and NF-κB multiprotein complexes. Current studies show that the nonprotein thiols and thiol-regulating enzymes as well as highly diffusible prooxidant reactive oxygen and nitrogen species released together in extracellular inflammatory milieu play essential role in controlling pro- and anti-inflammatory activities of CDAMP/DAMP and alarmins. Here, we provide an overview of these emerging concepts and mechanisms of triggering and maintenance of tissue inflammation under massive death of cells.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hayley I. Muendlein ◽  
Wilson M. Connolly ◽  
Zoie Magri ◽  
Irina Smirnova ◽  
Vladimir Ilyukha ◽  
...  

AbstractInflammation and cell death are closely linked arms of the host immune response to infection, which when carefully balanced ensure host survival. One example of this balance is the tightly regulated transition from TNFR1-associated pro-inflammatory complex I to pro-death complex II. By contrast, here we show that a TRIF-dependent complex containing FADD, RIPK1 and caspase-8 (that we have termed the TRIFosome) mediates cell death in response to Yersinia pseudotuberculosis and LPS. Furthermore, we show that constitutive binding between ZBP1 and RIPK1 is essential for the initiation of TRIFosome interactions, caspase-8-mediated cell death and inflammasome activation, thus positioning ZBP1 as an effector of cell death in the context of bacterial blockade of pro-inflammatory signaling. Additionally, our findings offer an alternative to the TNFR1-dependent model of complex II assembly, by demonstrating pro-death complex formation reliant on TRIF signaling.


2021 ◽  
Vol 22 (10) ◽  
pp. 5349
Author(s):  
Mayes Alswady-Hoff ◽  
Johanna Samulin Erdem ◽  
Santosh Phuyal ◽  
Oskar Knittelfelder ◽  
Animesh Sharma ◽  
...  

There is little in vitro data available on long-term effects of TiO2 exposure. Such data are important for improving the understanding of underlying mechanisms of adverse health effects of TiO2. Here, we exposed pulmonary epithelial cells to two doses (0.96 and 1.92 µg/cm2) of TiO2 for 13 weeks and effects on cell cycle and cell death mechanisms, i.e., apoptosis and autophagy were determined after 4, 8 and 13 weeks of exposure. Changes in telomere length, cellular protein levels and lipid classes were also analyzed at 13 weeks of exposure. We observed that the TiO2 exposure increased the fraction of cells in G1-phase and reduced the fraction of cells in G2-phase, which was accompanied by an increase in the fraction of late apoptotic/necrotic cells. This corresponded with an induced expression of key apoptotic proteins i.e., BAD and BAX, and an accumulation of several lipid classes involved in cellular stress and apoptosis. These findings were further supported by quantitative proteome profiling data showing an increase in proteins involved in cell stress and genomic maintenance pathways following TiO2 exposure. Altogether, we suggest that cell stress response and cell death pathways may be important molecular events in long-term health effects of TiO2.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 154
Author(s):  
Ignazio Restivo ◽  
Alessandro Attanzio ◽  
Luisa Tesoriere ◽  
Mario Allegra

Eryptosis is a coordinated, programmed cell death culminating with the disposal of cells without disruption of the cell membrane and the release of endocellular oxidative and pro-inflammatory milieu. While providing a convenient form of death for erythrocytes, dysregulated eryptosis may result in a series of detrimental and harmful pathological consequences highly related to the endothelial dysfunction (ED). Metabolic syndrome (MetS) is described as a cluster of cardiometabolic factors (hyperglycemia, dyslipidemia, hypertension and obesity) that increases the risk of cardiovascular complications such as those related to diabetes and atherosclerosis. In the light of the crucial role exerted by the eryptotic process in the ED, the focus of the present review is to report and discuss the involvement of eryptosis within MetS, where vascular complications are utterly relevant. Current knowledge on the mechanisms leading to eryptosis in MetS-related conditions (hyperglycemia, dyslipidemia, hypertension and obesity) will be analyzed. Moreover, clinical evidence supporting or proposing a role for eryptosis in the ED, associated to MetS cardiovascular complications, will be discussed.


Onco ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 25-37
Author(s):  
Brady Anderson ◽  
Mary Vue ◽  
Nya Gayluak ◽  
Sarah Jane Brown ◽  
Lynne T. Bemis ◽  
...  

Evidence of immunogenic cell death as a predictor of response to cancer therapy has increased interest in the high molecular group box 1 protein (HMGB1). HMGB1 is a nuclear protein associated with chromatin organization and DNA damage repair. HMGB1 is also a damage-associated molecular pattern (DAMP) protein and promotes proinflammatory signaling in a paracrine and autocrine manner. Extracellular HMGB1 can promote activation of NF-kB and is associated with several chronic inflammatory and autoimmune diseases, including sepsis, rheumatoid arthritis, atherosclerosis, chronic kidney disease, systemic lupus erythematosus (SLE), as well as cancer. In this review, we describe studies that demonstrate the use of deacetylase inhibitors and HMGB1 inhibitors to alter the expression and localization of HMGB1 in cancer cells, with a focus on lung cancer. The drugs described herein are well established and frequently used in human and small mammal studies. The main objective of this review is to summarize the potential benefit of targeting posttranslational modification of HMGB1 to decrease inflammatory signaling in the tumor microenvironment, and perhaps lead to improved response to current immunotherapeutic approaches.


2018 ◽  
Vol 3 (30) ◽  
pp. eaau1022 ◽  
Author(s):  
Regina Stark ◽  
Thomas H. Wesselink ◽  
Felix M. Behr ◽  
Natasja A. M. Kragten ◽  
Ramon Arens ◽  
...  

Tissue-resident memory T cells (TRM) are noncirculating immune cells that contribute to the first line of local defense against reinfections. Their location at hotspots of pathogen encounter frequently exposes TRM to tissue damage. This history of danger-signal exposure is an important aspect of TRM-mediated immunity that has been overlooked so far. RNA profiling revealed that TRM from liver and small intestine express P2RX7, a damage/danger-associated molecular pattern (DAMP) receptor that is triggered by extracellular nucleotides (ATP, NAD+). We confirmed that P2RX7 protein was expressed in CD8+ TRM but not in circulating T cells (TCIRC) across different infection models. Tissue damage induced during routine isolation of liver lymphocytes led to P2RX7 activation and resulted in selective cell death of TRM. P2RX7 activation in vivo by exogenous NAD+ led to a specific depletion of TRM while retaining TCIRC. The effect was absent in P2RX7-deficient mice and after P2RX7 blockade. TCR triggering down-regulated P2RX7 expression and made TRM resistant to NAD-induced cell death. Physiological triggering of P2RX7 by sterile tissue damage during acetaminophen-induced liver injury led to a loss of previously acquired pathogen-specific local TRM in wild-type but not in P2RX7 KO T cells. Our results highlight P2RX7-mediated signaling as a critical pathway for the regulation of TRM maintenance. Extracellular nucleotides released during infection and tissue damage could deplete TRM locally and free niches for new and infection-relevant specificities. This suggests that the recognition of tissue damage promotes persistence of antigen-specific over bystander TRM in the tissue niche.


2021 ◽  
Author(s):  
Ruoshi Peng ◽  
Xuan Wang-Kan ◽  
Manja Idorn ◽  
Felix Y Zhou ◽  
Susana L Orozco ◽  
...  

AbstractCOVID-19 caused by the SARS-CoV-2 virus remains a threat to global health. The disease severity is mediated by cell death and inflammation, which regulate both the antiviral and the pathological innate immune responses. ZBP1, an interferon-induced cytosolic nucleic acid sensor, facilitates antiviral responses via RIPK3. Although ZBP1-mediated cell death is widely described, whether and how it promotes inflammatory signaling is unclear. Here, we report a ZBP1-induced inflammatory signaling pathway that depends on ubiquitination and RIPK3’s scaffolding ability independently of cell death. In human cells, ZBP1 associates with RIPK1 and RIPK3 as well as ubiquitin ligases cIAP1 and LUBAC. RIPK1 and ZBP1 are ubiquitinated to promote TAK1- and IKK-mediated inflammatory signaling. Additionally, RIPK1 recruits the p43/41-caspase-8-p43-FLIP heterodimer to suppress RIPK3 kinase activity, which otherwise promotes inflammatory signaling in a kinase activity-dependent manner. Lastly, we show that ZBP1 contributes to SARS-CoV-2-induced cytokine production. Taken together, we describe a ZBP1-RIPK1-RIPK3-mediated inflammatory signaling pathway relayed by the scaffolding role of RIPKs and regulated by caspase-8. Our results suggest the ZBP1 pathway contributes to inflammation in response to SARS-CoV-2 infection.


Author(s):  
Xin He ◽  
Yue Xie ◽  
Qiongping Zheng ◽  
Zeyu Zhang ◽  
Shanshan Ma ◽  
...  

Impairment of autophagy has been strongly implicated in the progressive loss of nigral dopaminergic neurons in Parkinson’s disease (PD). Transcription factor E3 (TFE3), an MiTF/TFE family transcription factor, has been identified as a master regulator of the genes that are associated with lysosomal biogenesis and autophagy. However, whether TFE3 is involved in parkinsonian neurodegeneration remains to be determined. In this study, we found decreased TFE3 expression in the nuclei of the dopaminergic neurons of postmortem human PD brains. Next, we demonstrated that TFE3 knockdown led to autophagy dysfunction and neurodegeneration of dopaminergic neurons in mice, implying that reduction of nuclear TFE3 may contribute to autophagy dysfunction-mediated cell death in PD. Further, we showed that enhancement of autophagy by TFE3 overexpression dramatically reversed autophagy downregulation and dopaminergic neurons loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. Taken together, these findings demonstrate that TFE3 plays an essential role in maintaining autophagy and the survival of dopaminergic neurons, suggesting TFE3 activation may serve as a promising strategy for PD therapy.


2019 ◽  
Vol 21 (1) ◽  
pp. 137-140
Author(s):  
O. V. Dolgikh ◽  
N. V. Zaitseva ◽  
D. G. Dianova ◽  
A. V. Krivtsov ◽  
K. D. Starkova ◽  
...  

Apoptosis is defined as a highly regulated form of programmed cell death with typical morphological and biochemical features. A variety of factors, including heavy metals, may influence the intensity of programmed cell death. The aim of the work was to simulate apoptosis in an in vitrosystem under the conditions of stable strontium exposure. The children’s population consuming drinking water with high strontium (Sr2+) content (n = 49) was observed. The level of lymphocyte apoptosis was determined with flow cytometry technique, by means of labeled annexin V-FITC conjugate (AnnV-FITC) and propidium iodide (PI) staining. AnnV-FITC+PI- cells were regarded as early apoptotic forms, whereas late apoptotic and/or necrotic cells were AnnV-FITC+PI+. The isolated leukocytes were incubated with Sr2+ at a concentration of 7.0 mg/l, the maximal permitted concentration (MPC) for water of aqueous objects, for 4 hours at 37 ºC. Expression of CD95 and p53 apoptosis markers was performed by flow cytometry using labeled monoclonal antibodies.In vitroexposure to strontium was associated with significantly decreased expression of apoptosisregulating factors, i.e., membrane marker CD95 and intracellular transcription protein p53, 1.56- and 1.68-fold, respectively. Meanwhile, we revealed a significantly (4.68-fold) decreased amounts of AnnV-FITC+PI--cells, as well as a statistically significant (1.35-fold) increase of the AnnV-FITC+PI+-cells. Moreover, the amounts of AnnV-FITC+ PI--lymphocytes in all samples were below the physiological ranges and control values. The number of samples with higher contents of AnnV-FITC+PI+-lymphocyte exceeding the established standards and control values, was 30.8%. Thus, it has been experimentally proven that strontium, at a concentration corresponding to MPC for water objects may significantly inhibit cell death along apoptotic pathways, with switching to necrotic cell death mechanisms, according to phosphatidylserine contents, as detected by annexin V binding test. The data have revealed an ability of strontium to have a significant effect upon the parameters of regulation and maintenance of cellular homeostasis, by influencing the apoptosis intensity, due to shifting a balance towards necrosis and reducing expression of apoptosis-regulating factors. The results of this study may be used in order to identify some marker indexes of immune disorders potentially induced by external influence of strontium upon human health under specific environmental factors.


Sign in / Sign up

Export Citation Format

Share Document