scholarly journals Antibiofilm Activity of Chilean Propolis onStreptococcus mutansIs Influenced by the Year of Collection

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jorge Jesús Veloz ◽  
Nicolás Saavedra ◽  
Alexis Lillo ◽  
Marysol Alvear ◽  
Leticia Barrientos ◽  
...  

The chemical composition of propolis varies according to factors that could have an influence on its biological properties. Polyphenols from propolis have demonstrated an inhibitory effect onStreptococcus mutansgrowth. However, it is not known if different years of propolis collection may affect its activity. We aimed to elucidate if the year of collection of propolis influences its activity onStreptococcus mutans. Polyphenol-rich extracts were prepared from propolis collected in three different years, characterized by LC-MS and quantified the content of total polyphenols and flavonoids groups. Finally, was evaluated the antibacterial effect onStreptococcus mutansand the biofilm formation. Qualitative differences were observed in total polyphenols, flavones, and flavonols and the chemical composition between the extracts, affecting the strength of inhibition of biofilm formation but not the antimicrobial assays. In conclusion, chemical composition of propolis depends on the year of collection and influences the strength of the inhibition of biofilm formation.

Pathogens ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 115 ◽  
Author(s):  
Busi Siddhardha ◽  
Uday Pandey ◽  
K. Kaviyarasu ◽  
Rajasekharreddy Pala ◽  
Asad Syed ◽  
...  

The application of nanotechnology in medicine is gaining popularity due to its ability to increase the bioavailability and biosorption of numerous drugs. Chrysin, a flavone constituent of Orocylumineicum vent is well-reported for its biological properties. However, its therapeutic potential has not been fully exploited due to its poor solubility and bioavailability. In the present study, chrysin was encapsulated into chitosan nanoparticles using TPP as a linker. The nanoparticles were characterized and investigated for their anti-biofilm activity against Staphylococcus aureus. At sub-Minimum Inhibitory Concentration, the nanoparticles exhibited enhanced anti-biofilm efficacy against S. aureus as compared to its bulk counterparts, chrysin and chitosan. The decrease in the cell surface hydrophobicity and exopolysaccharide production indicated the inhibitory effect of the nanoparticles on the initial stages of biofilm development. The growth curve analysis revealed that at a sub-MIC, the nanoparticles did not exert a bactericidal effect against S. aureus. The findings indicated the anti-biofilm activity of the chrysin-loaded chitosan nanoparticles and their potential application in combating infections associated with S. aureus.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Jorge Jesús Veloz ◽  
Marysol Alvear ◽  
Luis A. Salazar

Several biological activities have been reported for the Chilean propolis, among their antimicrobial and antibiofilm properties, due to its high polyphenol content. In this study, we evaluate alternative methods to assess the effect of Chilean propolis on biofilm formation and metabolic activity of Streptococcus mutans (S. mutans), a major cariogenic agent in oral cavity. Biofilm formation was studied by using crystal violet and by confocal microscopy. The metabolic activity of biofilm was evaluated by MTT and by flow cytometry analysis. The results show that propolis reduces biofilm formation and biofilm metabolic activity in S. mutans. When the variability of the methods to measure biofilm formation was compared, the coefficient of variation (CV) fluctuated between 12.8 and 23.1% when using crystal violet methodology. On the other hand, the CV ranged between 2.2 and 3.3% with confocal microscopy analysis. The CV for biofilm’s metabolic activity measured by MTT methodology ranged between 5.0 and 11.6%, in comparison with 1.9 to 3.2% when flow cytometry analysis was used. Besides, it is possible to conclude that the methods based on colored compounds presented lower precision to study the effect of propolis on biofilm properties. Therefore, we recommend the use of flow cytometry and confocal microscopy in S. mutans biofilm analysis.


2020 ◽  
Author(s):  
Sylwia Jarzynka ◽  
Kamila Strom ◽  
Oliwia Makarewicz ◽  
Anna Minkiewicz-Zochniak ◽  
Anna Koryszewska-Baginska ◽  
...  

<p><strong>Background</strong>: Human milk oligosaccharides (HMOs) are the third most abundant component of breast milk, after fat and lactose, that promote infant health. Recent studies have shown that HMOs demonstrated antimicrobial and antibiofilm activity against different strains. Cystic fibrosis (CF), it is one of the major respiratory diseases, the clinical management and definitive treatment of CF biofilm-mediated chronic bacterial lung infection remains a challenge.</p> <p><strong>Objective</strong>: In this study, we examine HMOs antibiofilm activity against pathogens isolated from CF patients.</p> <p><strong>Methods and results</strong>: In current work, we investigated the antibiofilm activity of the saccharide fraction obtained from pooled human milk of 9 donors against strains of: <em>Acinetobacter baumannii</em>, <em>Pseudomonas aeruginosa</em>, <em>Enterobacteriaceae</em>, <em>Staphylococcus aureus</em> and <em>Burkholderia cenocepacia</em>, an intrinsically multi-resistant pathogen associated with high mortality in CF patients. We tested the ability of HMOs to inhibit biofilm formation and to eradicate matured biofilms. Live/dead staining of the biofilms and CLSM image acquisition were used.</p> <p>The pooled HMOs showed a biofilm eradicating effect on most tested pathogens. The HMOs effectively killed the bacteria at high concentration (20 mg/ml, corresponds to the concentration in human milk), but visible reduction of viable bacteria and biofilm mass was observed already at lower concentrations that varied between the species. The biofilm mass was also reduced in almost all pathogenic biofilms.</p> <p>The data presented in this paper supporting the importance and potential inhibitory effect of HMOs in biofilm formation. HMOs could potentially be used as novel therapeutics to treat or prevent infectious disease in patient with CF.</p>


2018 ◽  
Vol 773 ◽  
pp. 323-327
Author(s):  
Sroisiri Thaweboon ◽  
Boonyanit Thaweboon

Streptococcus mutans has been reported to be a major causative microorganism for oral biofilm associated with dental caries. Jasmine sambac or Arabian jasmine is a species of jasmine native to tropical and warm temperate regions particularly West and Southeast Asia. The antimicrobial activities of essential oil extracted from the flowers of J. sambac have been shown to attract researchers. Objective: To determine the anti-biofilm formation of S. mutans by mouthwash containing jasmine oil. Materials and Methods: S. mutans KPSK2, the cariogenic strain of oral streptococci was used in the study. The 24-h biofilms of S. mutans were formed on polystyrene plates treated with jasmine mouthwash. The 0.2% chlorhexidine gluconate and phosphate buffer saline mouthwash were used as a positive and negative control respectively. The amount of biofilm was quantified by crystal violet staining and spectrophotometry at an optical density of 595 nm. Results: Jasmine mouthwash showed a significant inhibitory effect on S. mutans biofilm formation by decreasing 43% of biofilm whereas that of chlorhexidine showed 71% reduction. Conclusion: The anti-biofilm formation property of jasmine mouthwash was elucidated; therefore it might be another drug of choice that can be used as an adjunct to control the oral health in the prevention of dental caries.


2018 ◽  
Vol 4 (1) ◽  
pp. 95-107
Author(s):  
Nasrin Esfahanizadeh ◽  
Mohammad Reza Nourani ◽  
Abbas Bahador ◽  
Nasrin Akhondi ◽  
Mostafa Montazeri

Abstract Colonization of periodontal pathogens on the surgical sites is one of the primary reasons for the failure of regenerative periodontal therapies. Bioactive glasses (BGs) owing to their favorable structural and antimicrobial properties have been proposed as promising materials for the reconstruction of periodontal and peri-implant bone defects. This study aimed to investigate the antibiofilm activity of zinc-doped BG (Zn/BG) compared with 45S5 Bioglass® (BG®) on putative periodontal pathogens. In this in vitro experimental study, the nano BG doped with 5-mol% zinc and BG® were synthesized by sol-gel method. Mono-species biofilms of Aggregatibacter actinomycetemcomitans (A. a), Porphyromonas gingivalis (P. g), and Prevotella intermedia (P. i)were prepared separately in a well-containing microplate. After 48 hours of exposure to generated materials at 37°C, the anti-biofilm potential of the samples was studied by measuring the optical density (OD) at 570nm wavelengths with a microplate reader. Two-way ANOVA then analyzed the results. Both Zn/BG and BG® significantly reduced the biofilm formation ability of all examined strains after 48 hours of incubation (P=0.0001). Moreover, the anti-biofilm activity of Zn/BG was significantly stronger than BG® (P=0.0001), which resulted in the formation of a weak biofilm (OD<1) compared with a moderately adhered biofilm observed with BG® (1<OD<2). Zn/BG showed a significant inhibitory effect on the biofilm formation of all examined periodontal pathogens. Given the enhanced regenerative and anti-biofilm properties of this novel biomaterial, further investigations are required for its implementation in clinical situations.


2018 ◽  
Author(s):  
Yesol Yoo ◽  
Dong-Ho Seo ◽  
Hyunjin Lee ◽  
Young-Do Nam ◽  
Myung-Ji Seo

ABSTRACTStreptococcus mutansplays a key role in the development of dental caries and promotes the formation of oral biofilm produced by glucosyltransferases (GTFs).Bacillus velezensisK68 was isolated from traditional fermented foods and inhibits biofilm formation mediated byS. mutans. Gene amplification results demonstrated thatB. velezensisK68 contained genes for the biosynthesis of 1-deoxynojirimycin (1-DNJ), a known GTF expression inhibitor. The presence of the GabT1, Yktc1, and GutB1 genes required for 1-DNJ synthesis inB. velezensisK68 was confirmed. Supernatant fromB. velezensisK68 culture medium inhibited biofilm formation by 84% whenS. mutanswas cultured for 48 h, and inhibited it maximally when 1% glucose was added to theS. mutansculture medium as a GTF substrate. In addition, supernatant fromB. velezensisK68 medium containing 3 ppb 1- DNJ decreasedS. mutanscell surface hydrophobicity by 79.0 ± 0.8% compared with that of untreated control. The supernatant containing 1-DNJ decreasedS. mutansadherence by 99.97% and 98.83% under sugar-dependent and sugar-independent conditions, respectively.S. mutanstreated with the supernatant exhibited significantly reduced expression of the essential GTF genesgtfB,gtfC,andgtfDcompared to that in the untreated group. Thus,B. velezensisinhibits the biofilm formation, adhesion, and GTF gene expression ofS. mutansthrough 1- DNJ production.IMPORTANCEDental caries is among the most common infectious diseases worldwide, and its development is closely associated with physiological factors of bacteria, such as the biofilm formation and glucosyltransferase production ofStreptococcus mutans.Biofilms are difficult to remove once they have formed due to the exopolysaccharide matrix produced by the microorganisms residing in them; thus, inhibiting biofilm formation is a current focal point of research into prevention of dental caries. This study describes the inhibitory properties ofBacillus velezensisK68, an organism isolated from traditional Korean fermented foods, against biofilm formation byS. mutans. Herein, we show thatB. velezensisinhibits the biofilm formation, adherence to surfaces, and glucosyltransferase production ofS. mutans.


2021 ◽  
Author(s):  
Shabeer Ahmad Rather ◽  
Akhtar Mahmood ◽  
Lakhvinder Singh ◽  
Alka Bhatia ◽  
Sukesh Chander Sharma ◽  
...  

Abstract Dextransucrase produced by Streptococcus mutans play an essential role in the formation of dental caries by synthesizing exopolysaccharides from sucrose, an important metabolite of the organism. In this study we report the location of dextransucrase in Streptococcus mutans cells and describe that antibodies raised against dextransucrase inhibited biofilm formation and reduced the adherence and hydrophobic properties of Streptococcus mutans. Western blot analysis and immunoelectron microscopy revealed that dextransucrase is located abundantly in the membrane fraction in S. mutans cells. Scanning electron microscopy and fluorescence microscopy revealed reduced cell density, impaired bioflim (plaque) formation in presence of dextransucrase antibodies. Genes associated with bioflim formation in S. mutans such as GtfB, GtfC, BrpA, relA, Smu630, vicK were down regulated (50–97%) in presence of the enzyme antibody. Presence of enzyme antibodies reduced adherence of S. mutans cells to glass surfaces by 58% and hydrophobicity by 55.2%. However dextransucrase antibodies did not affect acid production by S. mutans, under the experimental conditions. Immunohistochemistry studies with certain human samples displayed no cross reactivity with dextransucrase antibody. These findings suggest that antibodies against dextransucrase exhibit a profound inhibitory effect on the vital cariogenic factors of S. mutans and have no cross reactivity with human tissues tested, thus implying that dextransucrase could be a promising antigen to study its anticariogenic potential.


2020 ◽  
Author(s):  
Jinheng Li ◽  
Tiantian Wu ◽  
Weiwei Peng ◽  
yaqin zhu

Abstract Background: Streptococcus mutans is the principal etiological agent of human dental caries. The major virulence factors of S. mutans are acid production, acid tolerance, extracellular polysaccharide (EPS) synthesis and biofilm formation. The aim of this study is to evaluate the effect of resveratrol, a natural compound, on virulence properties of S. mutans . Results: Resveratrol at sub-MIC levels significantly decreased acid production and acid tolerance, inhibited synthesis of water-soluble polysaccharide and water-insoluble polysaccharide, compromised biofilm formation. Related virulence gene expression ( ldh, relA, gtfC, comDE ) was down-regulated with increasing concentrations of resveratrol. Conclusions : Resveratrol has an inhibitory effect on S. mutans cariogenic virulence properties and it represents a promising anticariogenic agent. Keywords : resveratrol, Streptococcus mutans , acidogenicity, aciduricity, extracellular polysaccharide, biofilm


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Jorge Jesús Veloz ◽  
Marysol Alvear ◽  
Luis A. Salazar

Dental caries is multifactorial disease and an important health problem worldwide. Streptococcus mutans is considered as a major cariogenic agent in oral cavity. This bacteria can synthetize soluble and insoluble glucans from sucrose by glucosyltransferases enzymes and generate stable biofilm on the tooth surface. Biological properties of Chilean propolis have been described and it includes antimicrobial, antifungal, and antibiofilm activities. The main goal of this study was to quantify the concentrations of main flavonoids presents in Chilean propolis and compare some biological properties such as antimicrobial and antibiofilm activity of individual compounds and the mixture of this compounds, against S. mutans cultures. Chilean propolis was studied and some polyphenols present in this extract were quantified by HPLC-DAD using commercial standards of apigenin, quercetin, pinocembrin, and caffeic acid phenethyl ester (CAPE). MIC for antimicrobial activity was determined by serial dilution method and biofilm thickness on S. mutans was quantified by confocal microscopy. Pinocembrin, apigenin, quercetin, and caffeic acid phenethyl ester (CAPE) are the most abundant compounds in Chilean propolis. These polyphenols have strong antimicrobial and antibiofilm potential at low concentrations. However, pinocembrin and apigenin have a greater contribution to this action. The effect of polyphenols on S. mutans is produced by a combination of mechanisms to decrease bacterial growth and affect biofilm proliferation due to changes in their architecture.


2018 ◽  
Vol 13 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Liang Peng ◽  
Yunhao Xiong ◽  
Mei Wang ◽  
Manman Han ◽  
Weilan Cai ◽  
...  

AbstractThe essential oil of Mosla chinensis Maxim cv. Jiangxiangru is known for its antibacterial ability. This study aimed to investigate the chemical composition of Jiangxiangru essential oil and its inhibitory effect on Staphylococcus aureus biofilm formation. Gas chromatography/mass spectrometry (GC–MS) was used to determine the chemical composition of Jiangxiangru essential oil. Subsequently, the eight major chemical components were quantitatively analyzed using GC– MS, and their minimum inhibitory concentration (MIC) values against S. aureus were tested. Biofilm formation was detected by crystal violet semi-quantitative method and silver staining. Of the 59 peaks detected, 29 were identified by GC–MS. Of these peaks, thymol, carvacrol, p-cymene, γ-terpinene, thymol acetate, α-caryophyllene, 3-carene, and carvacryl acetate were present at a relatively higher concentration. The results of the quantitative test showed that thymol, carvacrol, p-cymene, and γ-terpinene were the major components of the essential oil. Among the eight reference substances, only thymol, carvacrol, and thymol acetate had lower MICs compared with the essential oil. Essential oil, carvacrol, carvacryl acetate, α-caryophyllene, and 3-carene showed the better inhibition of S. aureus biofilm formation. When one fourth of the MIC concentrations were used for these substances (0.0625 mg/mL for essential oil, 0.0305 mg/mL for carvacrol, 1.458 mg/mL for carvacryl acetate, 0.1268 mg/mL for α-caryophyllene, and 2.5975 mg/mL for 3-carene), the inhibition rates were over 80%. However, thymol, γ-terpinene, thymol acetate, and p-cymene showed a relatively poor inhibition of S. aureus biofilm formation. When 1× MIC concentrations of these substances were used, the inhibition rates were less than 50%. In conclusion, Jiangxiangru essential oil and its major components, carvacrol, carvacryl acetate, α-caryophyllene, and 3-carene, strongly inhibited biofilm formation in S. aureus.


Sign in / Sign up

Export Citation Format

Share Document