scholarly journals Regulatory Effect of Iguratimod on the Balance of Th Subsets and Inhibition of Inflammatory Cytokines in Patients with Rheumatoid Arthritis

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yunzhi Xu ◽  
Qi Zhu ◽  
Jinglve Song ◽  
Hongli Liu ◽  
Yutong Miao ◽  
...  

Objective. To expand upon the role of iguratimod (T-614) in the treatment of rheumatoid arthritis (RA), we investigated whether the Th1, Th17, follicular helper T cells (Tfh), and regulatory T cells (Treg) imbalance could be reversed by iguratimod and the clinical implications of this reversal.Methods. In this trial, 74 patients were randomized into iguratimod-treated (group A) and control (broup B) group for a 24-week treatment period. In the subsequent 28 weeks, both groups were given iguratimod. Frequencies of Th1, Th17, Tfh, and Treg were quantified using flow cytometry, and serum cytokines were detected by enzyme-linked immunosorbent assay. mRNA expression of cytokines and transcriptional factor were quantified by RT-PCR. The composite Disease Activity Score, erythrocyte sedimentation rate, and C-reactive protein were assessed at each visit.Result. The clinical scores demonstrated effective suppression of disease after treatment with iguratimod. In addition, iguratimod downregulated Th1, Th17-type response and upregulated Treg. Furthermore, the levels of Th1, Th17, and Tfh associated inflammatory cytokines and transcription factors were reduced after treatment with iguratimod, while the levels of Treg associated cytokines and transcription factors were increased.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yan Liu ◽  
Xinwang Yuan ◽  
Xiaofang Li ◽  
Dawei Cui ◽  
Jue Xie

Background. Follicular helper T (Tfh) cells are critical for high-affinity antibody generation and B cell maturation and differentiation, which play important roles in autoimmune diseases. Graves’ disease (GD) is one prototype of common organ-specific autoimmune thyroid diseases (AITD) characterized by autoreactive antibodies, suggesting a possible role for Tfh cells in the pathogenesis of GD. Our objective was to explore the role of circulating Tfh cell subsets and associated plasma cells (PCs) in patients with GD. Methods. Thirty-six patients with GD and 20 healthy controls (HC) were enrolled in this study. The frequencies of circulating Tfh cell subsets and PCs were determined by flow cytometry, and plasma cytokines, including interleukin- (IL-) 21, IL-4, IL-17A, and interferon- (IFN-) γ, were measured using an enzyme-linked immunosorbent assay (ELISA). The mRNA expression of transcription factors (Bcl-6, T-bet, GATA-3, and RORγt) in peripheral blood mononuclear cells (PBMCs) was evaluated by real-time quantitative PCR. Results. Compared with HC, the frequencies of circulating CD4+CXCR5+CD45RA−Tfh (cTfh) cells with ICOS and PD-1 expression, the Tfh2 subset (CXCR3−CCR6−Tfh) cells, and PCs (CD19+CD27highCD38high) were significantly increased in the GD patients, but the frequencies of Tfh1 (CXCR3+CCR6−Tfh) and Tfh17 (CXCR3−CCR6+Tfh) subset cells among CD4+T cells were significantly decreased in GD patients. The plasma concentrations of IL-21, IL-4, and IL-17A were elevated in GD patients. Additionally, a positive correlation was found between the frequency of PD-1+Tfh cells (Tfh2 or PCs) and plasma IL-21 concentration (or serum TPO-Ab levels). The mRNA levels of transcription factors (GATA-3 and RORγt) were significantly increased, but T-bet and Bcl-6 mRNA expression was not obviously varied in PBMCs from GD patients. Interestingly, Tfh cell subsets and PCs from GD patients were partly normalized by treatment. Conclusion. Circulating Tfh cell subsets and PCs might play an important role in the pathogenesis of GD, which are potential clues for GD patients’ interventions.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1350.1-1351
Author(s):  
O. Korolik ◽  
В. Zavodovsky ◽  
E. Papichev ◽  
Y. Polyakova ◽  
S. L ◽  
...  

Background:Cytokines stimulate the inflammatory response in the synovial membrane with rheumatoid arthritis (RA), initiate apoptosis of chondrocytes, activation of osteoclasts. The progression of comorbid diseases is also associated with the influence of cytokines. At the same time, anti-inflammatory cytokines are produced in various tissues. Their role in the pathogenesis of RA and its complications is ambiguous.Adiponectin (A) and Fetuin A (FA) are classified as negative acute phase proteins. Their concentration decreases with an increase in the level of pro-inflammatory cytokines: TNF-α, IL-1 and IL-6. Molecules A and FA, regardless of various factors and from each other, have similar effects in relation to pro-inflammatory cytokines, lipid and carbohydrate metabolism.Visfatin (V) and Nesfatin-1 (N-1) are pro-inflammatory adipokines. B is produced by cells of the mononuclear phagocytic system and connective tissue. N-1 - is produced by the cells of the intermediate and medulla oblongata and by the cells of the gastric mucosa.Objectives:to study the correlation of B, H-1, A and FA with the severity of inflammation in RAMethods:60 patients with RA and 30 healthy individuals were examined. The level of cytokines was determined by an indirect enzyme-linked immunosorbent assay using commercial test systems (Bio Vendor, cat No. RD195023100, Bio Vendor Human Fetuin-A, RaiBiotech, cat No. EIA-VIS-1, RaiBiotech, cat No. EIA-NESF). All patients underwent a full examination. Diagnosed with 2010 EULAR / ACR recommendations.Results:A decreased level of A (less than 0.8 μg/ml) was detected in 15 patients (25%), F-A (less than 653.55 μg/ml) in 16 (27%), a high level of V (more than 39 ng/ml) - in 55 (91%), N-1 (more than 37.95 ng/ml) - in 36 (60%), which is significantly more often than in healthy individuals. No significant difference in the levels of determined adipokines was found depending on the gender and body weight of patients with RA. The level of cytokines in RA is associated with high activity according to DAS 28, positivity by Anti-CCP, extraarticular manifestations of RA. The greatest correlation with extraarticular manifestations is with cutaneous and cerebral vasculitis. The levels of FA and N-1 also correlated with more pronounced radiological changes (X-ray stage III). FA circulating inhibitor of ectopic calcification. N-1 level is positively correlated with systolic blood pressure.Conclusion:A low level of A and FA, a high level of V and N-1 is characteristic of RA with the presence of high activity and positivity in the RF and Anti-CCP. An increased level of B is determined by more than 90% of patients, which indicates its high pro-inflammatory activity. The level of F and N-1 is also associated with the degree of damage to bone tissue (stage III, a lot of erosion). A positive correlation of level V and N-1, negative A and FA with the severity of inflammation in RA confirms the involvement of these proteins in the pathogenesis. A high level of A and V increases the risk of developing cardiovascular diseases and their complications, the effect of N-1 and FA is being studied. The effect of cytokines on osteoclasts and osteoblasts in RA is ambiguousReferences:[1]Visfatin and Rheumatoid Arthritis: Pathogenetic Implications and Clinical Utility. Polyakova Y. Curr Rheumatol Rev.2019[2]Serum nesfatin -1 as a marker of systemic inflammation in rheumatoid arthritis. Kvlividze T. Klinicheskaya Laboratornaya Diagnostika.2019; 64 (1):53-56 (in Russ)[3]Fetuin-A. Novel hepatokine in rheumatoid arthritis laboratory diagnostics. Papichev E. Klinicheskaya Laboratornaya Diagnostika.2018; 63 (12):756-760 (in Russ)Disclosure of Interests:None declared


2020 ◽  
Vol 14 (4) ◽  
pp. 2453-2465
Author(s):  
Ramadan Yahia ◽  
Shereen M. Mohammed ◽  
Manal M. Hassanien ◽  
Shabaan H. Ahmed ◽  
Helal F. Hetta

Rheumatoid arthritis (RA) is a systemic inflammatory disease with chronic nature of joints related to autoimmunity. Vitamin D was found to modulate cell growth, function of immune cells and anti-inflammatory action. The aims of that study were to investigate serum level of vitamin D and some cytokines and to identify the correlation between vitamin D and these cytokines in RA. Totally 40 RA patients without vitamin D supplement were involved in this study. Serum level of vitamin D, interleukin-6 (IL-6), IL-10, IL-35, C-reactive protein (CRP) and tumor necrosis factor α (TNF-α), all of them were measure in all patients by enzyme-linked immunosorbent assay (ELISA). Patients were classified according to Vitamin D levels into two groups; RA patients with Vit. D deficiency (n=25) and RA patients with Vit. D sufficiency (n=15). IL-6 was lower significantly (P = 0.03) in RA patients with Vit. D sufficiency than RA patients with Vit. D deficiency. IL-10 and IL-35 were higher significantly (P = 0.0234, P = 0.0356 respectively) in RA patients with Vit. D sufficiency than RA patients with Vit. D deficiency. Vit. D was significantly positively correlated with both IL-10 (r = 0.4516, P = 0.0034) and IL-35 (r = 0.3424, P = 0.0329) and negatively correlated with IL-6 (r = -0.3188, P = 0.0479). Sufficient serum level of Vit. D is correlated with higher level of anti-inflammatory cytokines (IL-10 and IL-35) and lower level of IL-6. This support the immunomodulatory effect of Vit. D in RA.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Rishi Vishal Luckheeram ◽  
Rui Zhou ◽  
Asha Devi Verma ◽  
Bing Xia

CD4+T cells are crucial in achieving a regulated effective immune response to pathogens. Naive CD4+T cells are activated after interaction with antigen-MHC complex and differentiate into specific subtypes depending mainly on the cytokine milieu of the microenvironment. Besides the classical T-helper 1 and T-helper 2, other subsets have been identified, including T-helper 17, regulatory T cell, follicular helper T cell, and T-helper 9, each with a characteristic cytokine profile. For a particular phenotype to be differentiated, a set of cytokine signaling pathways coupled with activation of lineage-specific transcription factors and epigenetic modifications at appropriate genes are required. The effector functions of these cells are mediated by the cytokines secreted by the differentiated cells. This paper will focus on the cytokine-signaling and the network of transcription factors responsible for the differentiation of naive CD4+T cells.


2018 ◽  
Vol 38 (4) ◽  
Author(s):  
Zhongbin Xia ◽  
Fanru Meng ◽  
Ying Liu ◽  
Yuxuan Fang ◽  
Xia Wu ◽  
...  

Background: Rheumatoid arthritis (RA) is a inflammatory disease that characterized with the destruction of synovial joint, which could induce disability. Inflammatory response mediated the RA. It has been reported that MiR-128-3p is significantly increased in RA, while the potential role was still unclear. Methods: T cells in peripheral blood mononuclear cell (PBMC) were isolated from the peripheral blood from people of RA and normal person were used. Real-time PCR was performed to detect the expression of MiR-128-3p, while the protein expression of tumor necrosis factor-α-induced protein 3 (TNFAIP3) was determined using Western blot. The levels of IL-6 and IL-17 were measured using enzyme-linked immunosorbent assay (ELISA). The expression of CD69 and CD25 was detected using flow cytometry. The RA mouse model was constructed for verification of the role of MiR-128-3p. Results: The expression of MiR-128-3p was significantly increased, while TNFAIP3 was decreased, the levels of IL-6 and IL-17 were also increased in the T cells of RA patients. Down-regulated MiR-128-3p significantly suppressed the expression of p-IkBα and CD69, and CD25in T cells. MiR-128-3p targets TNFAIP3 to regulate its expression. MiR-128-3p knockdown significantly suppressed the activity of nuclear factor κB (NF-κB) and T cells by up-regulating TNFAIP3, while cells co-transfected with si-TNFAIP3 abolished the effects of MiR-128-3p knockdown. The in vivo experiments verified the potential role of MiR-128-3p on RA. Conclusion: Down-regulated MiR-128-3p significantly suppressed the inflammation response of RA through suppressing the activity of NF-κB pathway, which was mediated by TNFAIP3.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Leon G. D’Cruz ◽  
Kevin G. McEleney ◽  
Chris Cochrane ◽  
Kyle B. C. Tan ◽  
Priyank Shukla ◽  
...  

AbstractRheumatoid arthritis (RA) is characterised by painful, stiff and swollen joints. RA features sporadic ‘flares’ or inflammatory episodes—mostly occurring outside clinics—where symptoms worsen and plasma C-reactive protein (CRP) becomes elevated. Poor control of inflammation results in higher rates of irreversible joint damage, increased disability, and poorer quality of life. Flares need to be accurately identified and managed. A method comparison study was designed to assess agreement between CRP values obtained by dried blood spot (DBS) versus conventional venepuncture sampling. The ability of a weekly DBS sampling and CRP test regime to detect flare outside the clinic was also assessed. Matched venepuncture and finger lancet DBS samples were collected from n = 100 RA patients with active disease at baseline and 6 weeks (NCT02809547). A subset of n = 30 RA patients submitted weekly DBS samples over the study period. Patient demographics, including self-reported flares were recorded. DBS sample CRP measurements were made by enzyme-linked immunosorbent assay, and venepuncture samples by a reference immunoturbometric assay. Data was compared between sample types by Bland–Altman and weighted Deming regression analyses. Flare detection sensitivity and specificity were compared between ‘minimal’ baseline and 6 week sample CRP data and the ‘continuous’ weekly CRP data. Baseline DBS ELISA assay CRP measures yielded a mean positive bias of 2.693 ± 8.640 (95% limits of agreement − 14.24 to 19.63%), when compared to reference assay data. Deming regression revealed good agreement between the DBS ELISA method and reference assay data, with baseline data slope of 0.978 and intercept -0.153. The specificity of ‘continuous’ area under the curve (AUC) CRP data (72.7%) to identify flares, was greater than ‘minimal’ AUC CRP data (54.5%). This study indicates reasonable agreement between DBS and the reference method, especially at low to mid-range CRP values. Importantly, longitudinal CRP measurement in RA patients helps to clearly identify flare and thus could assist in remote monitoring strategies and may facilitate timely therapeutic intervention.Trial registration: The Remote Arthritis Disease Activity MonitoR (RADAR) study was registered on 22/06/2016 at ClinicalTrials.gov Identifier: NCT02809547. https://clinicaltrials.gov/ct2/show/NCT02809547.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1205 ◽  
Author(s):  
Eunjin Sohn ◽  
Hye-Sun Lim ◽  
Yu Jin Kim ◽  
Bu-Yeo Kim ◽  
Joo-Hwan Kim ◽  
...  

We aimed to investigate the therapeutic effects of an Elaeagnus glabra f. oxyphylla (EGFO) ethanol extract in mice with scopolamine-induced memory dysfunction. Fifty male mice were randomly divided into a normal control group, a scopolamine-treated group, a scopolamine and EGFO extract-treated group, and a scopolamine and tacrine-treated group. EGFO (50 or 100 mg/kg/day) was received for 21 days. Step-through passive avoidance and Y-maze tests were performed to examine the effects of treatment on learning and memory impairments. Acetylcholine (Ach) levels and acetylcholinesterase (AchE) activity were measured via an enzyme-linked immunosorbent assay (ELISA). Levels of choline acetyltransferase (ChAT), nerve growth factor (NGF), cAMP response element-binding protein (CREB), and apoptosis-related protein expression were determined via Western blot analysis. EGFO pretreatment significantly attenuated scopolamine-induced memory impairments, relative to findings observed in the scopolamine-treated group. Levels of cholinergic factors in the brain tissues were markedly attenuated in the scopolamine-treated group. EGFO treatment also attenuated neural apoptosis in scopolamine-treated mice by decreasing the expression of apoptosis-related proteins such as Bax, Bcl2, cleaved caspase-3, and TUNEL staining. These results suggest that EGFO improves memory and cognition in a mouse model of memory impairment by restoring cholinergic and anti-apoptotic activity, possibly via activation of CREB/NGF signaling.


2004 ◽  
Vol 200 (3) ◽  
pp. 277-285 ◽  
Author(s):  
Michael R. Ehrenstein ◽  
Jamie G. Evans ◽  
Animesh Singh ◽  
Samantha Moore ◽  
Gary Warnes ◽  
...  

Regulatory T cells have been clearly implicated in the control of disease in murine models of autoimmunity. The paucity of data regarding the role of these lymphocytes in human autoimmune disease has prompted us to examine their function in patients with rheumatoid arthritis (RA). Regulatory (CD4+CD25+) T cells isolated from patients with active RA displayed an anergic phenotype upon stimulation with anti-CD3 and anti-CD28 antibodies, and suppressed the proliferation of effector T cells in vitro. However, they were unable to suppress proinflammatory cytokine secretion from activated T cells and monocytes, or to convey a suppressive phenotype to effector CD4+CD25− T cells. Treatment with antitumor necrosis factor α (TNFα; Infliximab) restored the capacity of regulatory T cells to inhibit cytokine production and to convey a suppressive phenotype to “conventional” T cells. Furthermore, anti-TNFα treatment led to a significant rise in the number of peripheral blood regulatory T cells in RA patients responding to this treatment, which correlated with a reduction in C reactive protein. These data are the first to demonstrate that regulatory T cells are functionally compromised in RA, and indicate that modulation of regulatory T cells by anti-TNFα therapy may be a further mechanism by which this disease is ameliorated.


Sign in / Sign up

Export Citation Format

Share Document