scholarly journals DNA Methylation Levels of Melanoma Risk Genes Are Associated with Clinical Characteristics of Melanoma Patients

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Érica S. S. de Araújo ◽  
Dimitrius T. Pramio ◽  
André Y. Kashiwabara ◽  
Paula C. Pennacchi ◽  
Silvya S. Maria-Engler ◽  
...  

In melanoma development, oncogenic process is mediated by genetic and epigenetic mutations, and few studies have so far explored the role of DNA methylation either as predisposition factor or biomarker. We tested patient samples for germlineCDKN2Amethylation status and found no evidence of inactivation by promoter hypermethylation. We have also investigated the association of clinical characteristics of samples with the DNA methylation pattern of twelve genes relevant for melanomagenesis. Five genes (BAP1, MGMT, MITF, PALB2, andPOT1) presented statistical association between blood DNA methylation levels and eitherCDKN2A-mutation status, number of lesions, or Breslow thickness. In tumors, five genes (KIT, MGMT, MITF, TERT, andTNF) exhibited methylation levels significantly different between tumor groups including acral compared to nonacral melanomas and matched primary lesions and metastases. Our data pinpoint that the methylation level of eight melanoma-associated genes could potentially represent markers for this disease both in peripheral blood and in tumor samples.

2021 ◽  
Vol 22 (13) ◽  
pp. 7144
Author(s):  
Magdalena Piotrowska ◽  
Mateusz Gliwiński ◽  
Piotr Trzonkowski ◽  
Dorota Iwaszkiewicz-Grzes

Regulatory T cells (Tregs) exert a highly suppressive function in the immune system. Disturbances in their function predispose an individual to autoimmune dysregulation, with a predominance of the pro-inflammatory environment. Besides Foxp3, which is a master regulator of these cells, other genes (e.g., Il2ra, Ctla4, Tnfrsf18, Ikzf2, and Ikzf4) are also involved in Tregs development and function. Multidimensional Tregs suppression is determined by factors that are believed to be crucial in the action of Tregs-related genes. Among them, epigenetic changes, such as DNA methylation, tend to be widely studied over the past few years. DNA methylation acts as a repressive mark, leading to diminished gene expression. Given the role of increased CpG methylation upon Tregs imprinting and functional stability, alterations in the methylation pattern can cause an imbalance in the immune response. Due to the fact that epigenetic changes can be reversible, so-called epigenetic modifiers are broadly used in order to improve Tregs performance. In this review, we place emphasis on the role of DNA methylation of the genes that are key regulators of Tregs function. We also discuss disease settings that have an impact on the methylation status of Tregs and systematize the usefulness of epigenetic drugs as factors able to influence Tregs functions.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Peiru Liu ◽  
Jing Zhang ◽  
Duo Du ◽  
Dandan Zhang ◽  
Zelin Jin ◽  
...  

Abstract Background Thoracic aortic dissection (TAD) is a severe disease with limited understandings in its pathogenesis. Altered DNA methylation has been revealed to be involved in many diseases etiology. Few studies have examined the role of DNA methylation in the development of TAD. This study explored alterations of the DNA methylation landscape in TAD and examined the potential role of cell-free DNA (cfDNA) methylation as a biomarker in TAD diagnosis. Results Ascending aortic tissues from TAD patients (Stanford type A; n = 6) and healthy controls (n = 6) were first examined via whole-genome bisulfite sequencing (WGBS). While no obvious global methylation shift was observed, numerous differentially methylated regions (DMRs) were identified, with associated genes enriched in the areas of vasculature and heart development. We further confirmed the methylation and expression changes in homeobox (Hox) clusters with 10 independent samples using bisulfite pyrosequencing and quantitative real-time PCR (qPCR). Among these, HOXA5, HOXB6 and HOXC6 were significantly down-regulated in TAD samples relative to controls. To evaluate cfDNA methylation pattern as a biomarker in TAD diagnosis, cfDNA from TAD patients (Stanford type A; n = 7) and healthy controls (n = 4) were examined by WGBS. A prediction model was built using DMRs identified previously from aortic tissues on methylation data from cfDNA. Both high sensitivity (86%) and specificity (75%) were achieved in patient classification (AUC = 0.96). Conclusions These findings showed an altered epigenetic regulation in TAD patients. This altered epigenetic regulation and subsequent altered expression of genes associated with vasculature and heart development, such as Hox family genes, may contribute to the loss of aortic integrity and TAD pathogenesis. Additionally, the cfDNA methylation in TAD was highly disease specific, which can be used as a non-invasive biomarker for disease prediction.


2021 ◽  
Author(s):  
Tianyu Dong ◽  
Xiaoyan Wei ◽  
Qianting Qi ◽  
Peilei Chen ◽  
Yanqing Zhou ◽  
...  

Abstract Background: Epigenetic regulation plays a significant role in the accumulation of plant secondary metabolites. The terpenoids are the most abundant in the secondary metabolites of plants, iridoid glycosides belong to monoterpenoids which is one of the main medicinal components of R.glutinosa. At present, study on iridoid glycosides mainly focuses on its pharmacology, accumulation and distribution, while the mechanism of its biosynthesis and the relationship between DNA methylation and plant terpene biosynthesis are seldom reports. Results: The research showed that the expression of DXS, DXR, 10HGO, G10H, GPPS and accumulation of iridoid glycosides increased at first and then decreased with the maturity of R.glutinosa, and under different concentrations of 5-azaC, the expression of DXS, DXR, 10HGO, G10H, GPPS and the accumulation of total iridoid glycosides were promoted, the promotion effect of low concentration (15μM-50μM) was more significant, the content of genomic DNA 5mC decreased significantly, the DNA methylation status of R.glutinosa genomes was also changed. DNA demethylation promoted gene expression and increased the accumulation of iridoid glycosides, but excessive demethylation inhibited gene expression and decreased the accumulation of iridoid glycosides. Conclusion: The analysis of DNA methylation, gene expression, and accumulation of iridoid glycoside provides insights into accumulation of terpenoids in R.glutinosa and lays a foundation for future studies on the effects of epigenetics on the synthesis of secondary metabolites.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi1-vi1
Author(s):  
Erika Yamazawa ◽  
Shota Tanaka ◽  
Genta Nagae ◽  
Takayoshi Umeda ◽  
Taijun Hana ◽  
...  

Abstract BACKGROUND Ependymomas are currently classified into 9 subgroups by DNA methylation profiles. Although spinal cord ependymoma (SP-EPN) is distinct from other tumors, diversity within SP-EPN is still unclear. Here, we used transcriptomic and epigenomic profiles to investigate the diversity among Japanese SP-EPN cases. MATERIALS AND METHODS We analyzed 57 SP-EPN patients (32 males and 25 females, aged from 18 to 78 years, median: 52), including two cases of neurofibromatosis type 2, five cases of grade 3 (WHO grade). We obtained transcriptome (RNA-seq) and DNA methylation (Infinium Methylation EPIC array) data from fresh frozen specimens of SP-EPN resected at the University of Tokyo Hospital and our collaborative groups. RESULTS Three cases had a previous intracranial ependymoma operation. Hierarchical clustering of the DNA methylation data showed that these three cases of intracranial origin as a different cluster from spinal origin. The 45 grade 2 spinal ependymoma showed a relatively homogenous methylation pattern. However, the methylation status of HOX gene cluster regions is compatible with the segment of origin, which reflects the cells of origins are derived after the determination of segment identity. RNA sequencing of 57 cases revealed two subgroups within grade 2. Gene ontology analysis of differentially expressed genes suggested the difference in metabolic state such as rRNA translation and mitochondrial respiration between the two expression subgroups. CONCLUSION Epigenetic analysis indicated the accurate body segment origin of SP-EPN. We observed that metabolic states could divide grade 2 spinal cord ependymoma into 2 subgroups and will present the relationship to clinicopathological information.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Haoling Huang ◽  
Ping Wu ◽  
Shaolun Zhang ◽  
Qi Shang ◽  
Haotong Yin ◽  
...  

Abstract Background Bombyx mori nucleopolyhedrosis virus (BmNPV) is a major pathogen that threatens the sustainability of the sericultural industry. DNA methylation is a widespread gene regulation mode in epigenetics, which plays an important role in host immune response. Until now, little has been known about epigenetic regulation on virus diseases in insects. This study aims to explore the role of DNA methylation in BmNPV proliferation. Results Inhibiting DNA methyltransferase (DNMT) activity of silkworm can suppress BmNPV replication. The integrated analysis of transcriptomes and DNA methylomes in silkworm midguts infected with or without BmNPV showed that both the expression pattern of transcriptome and DNA methylation pattern are changed significantly upon BmNPV infection. A total of 241 differentially methylated regions (DMRs) were observed in BmNPV infected midguts, among which, 126 DMRs were hyper-methylated and 115 DMRs were hypo-methylated. Significant differences in both mRNA transcript level and DNA methylated levels were found in 26 genes. BS-PCR validated the hypermethylation of BGIBMGA014008, a structural maintenance of chromosomes protein gene in the BmNPV-infected midgut. In addition, DNMT inhibition reduced the expression of inhibitor of apoptosis family genes, iap1 from BmNPV, Bmiap2, BmSurvivin1 and BmSurvivin2. Conclusion Our results indicate that DNA methylation plays positive roles in BmNPV proliferation and loss of DNMT activity could induce the apoptosis of infected cells to suppress BmNPV proliferation. Our results may provide a new idea and research direction for the molecular mechanism on insect-virus interaction.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kyoungbun Lee ◽  
Young Seok Song ◽  
Yoonju Shin ◽  
Xianyu Wen ◽  
Younghoon Kim ◽  
...  

Abstract Intrahepatic cholangiocarcinoma (ICC) is a rare but fatal tumor. The isocitrate dehydrogenase 1 and 2 (IDH1/2) genes are known to be mutated in ICC. IDH1/2 mutations tend to be accompanied by enhanced hypermethylation at a subset of genomic loci. We sought to clarify the clinicopathological features, including prognostic value, of ICCs with IDH1/2 mutation-associated hypermethylation at a subset of genes. The mutation status of IDH1/2 and methylation status of 30 gene CpG island loci were analyzed in 172 cases of ICC using pyrosequencing and the MethyLight assay, respectively. The mutation status of IDH1/2 was correlated with clinicopathological features and the DNA methylation status at 30 gene loci. Then, the clinicopathological characteristics were analyzed regarding three-tiered methylation statuses in genes showing IDH1/2 mutation-associated methylation. IDH1/2 mutations were found in 9.3% of ICCs, and IDH1/2-mutated tumors were associated with the histological subtype, including the bile ductular type and small duct type, and poor differentiation. Eight DNA methylation markers showed associations with IDH1/2 mutations, and ICCs with > 5/8 methylated markers were associated with the bile ductular type or small duct type, absence of mucin production, absence of biliary intraepithelial neoplasia, and presence of chronic liver disease. > 5/8 methylated markers were an independent prognostic marker associated with better survival in both cancer-specific survival and recurrence-free survival. In summary, by analyzing the association between IDH1/2 mutations and DNA methylation in individual genes, we developed a panel of DNA methylation markers that were significantly associated with IDH1/2 mutations and were able to identify a subset of ICC with better clinical outcomes.


2019 ◽  
Vol 78 (10) ◽  
pp. 1420-1429 ◽  
Author(s):  
Xiaobo Zhu ◽  
Fang Chen ◽  
Ke Lu ◽  
Ai Wei ◽  
Qing Jiang ◽  
...  

ObjectivesOsteoarthritis (OA) is the most common degenerative joint disease in aged population and its development is significantly influenced by aberrant epigenetic modifications of numerous OA susceptible genes; however, the precise mechanisms that DNA methylation alterations affect OA pathogenesis remain undefined. This study investigates the critical role of epigenetic PPARγ (peroxisome proliferator–activated receptor-gamma) suppression in OA development.MethodsArticular cartilage expressions of PPARγ and bioactive DNA methyltransferases (DNMTs) from OA patients and mice incurred by DMM (destabilisation of medial meniscus) were examined. DNA methylation status of both human and mouse PPARγ promoters were assessed by methylated specific PCR and/or bisulfite-sequencing PCR. OA protections by a pharmacological DNA demethylating agent 5Aza (5-Aza-2'-deoxycytidine) were compared between wild type and PPARγ knockout mice.ResultsArticular cartilages from both OA patients and DMM mice display substantial PPARγ suppressions likely due to aberrant elevations of DNMT1 and DNMT3a and consequential PPARγ promoter hypermethylation. 5Aza known to inhibit both DNMT1 and DNMT3a reversed the PPARγ promoter hypermethylation, recovered the PPARγ loss and effectively attenuated the cartilage damage in OA mice. 5Aza also inhibited the OA-associated excessive inflammatory cytokines and deficit anti-oxidant enzymes, which were blocked by a specific PPARγ inhibitor in cultured chondrocytes. Further, 5Aza-confered protections against the cartilage damage and the associated abnormalities of OA-susceptible factors were significantly abrogated in PPARγ knockout mice.ConclusionEpigenetic PPARγ suppression plays a key role in OA development and PPARγ preservation via promoter demethylation possesses promising therapeutic potentials in clinical treatment of OA and the related joint diseases.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 7216-7216
Author(s):  
C. Lu ◽  
I. Wistuba ◽  
X. Zhou ◽  
B. N. Bekele ◽  
J. B. Putnam ◽  
...  

7216 Background: Promoter hypermethylation is an epigenetic mechanism of gene silencing commonly observed in malignancies. Prior studies suggest that hypermethylation of DAP kinase and p16, genes involved in apoptosis and cell cycle regulation, respectively, are associated with poorer survival in NSCLC patients. In this study we investigate the prognostic role of DAP kinase and p16 promoter hypermethylation in a large cohort of early-stage NSCLC patients. Methods: Pathologic stage I and II NSCLC patients who underwent complete surgical resection between 1/97 and 12/01 at our institution and did not receive adjuvant therapy were identified. Formalin-fixed, paraffin-embedded tissue blocks were retrieved, and p16 and DAP kinase promoter methylation status was determined by methylation specific PCR. Two-sided statistical analyses were performed to determine associations between methylation status, clinicopathologic characteristics, and survival. Results: DAP kinase and p16 methylation status was observed in 36.3% (97 of 267) and 36.4% (95 of 261) cases, respectively. Subject characteristics: 55% female, 77% former/current smokers, 81% stage I, 19% stage II, 61% adenocarcinoma, 29% squamous carcinoma, 63% performance status (PS) 0, 37% PS 1,93% < 5% weight loss. Recurrent NSCLC and death occurred in 21.3% and 38% of cases, respectively. No significant associations were observed between DAP kinase methylation status and subject characteristics. P16 methylation was associated with moderate/high grade (p = 0.03). A higher frequency of p16 methylation was observed in ever vs never smokers (39% vs 28%, p = 0.17). Preliminary analyses do not demonstrate significant associations between methylation status and overall survival (p16 p = 0.13; DAP kinase p = 0.56) or disease-free survival (p16 p = 0.36; DAP kinase p = 0.71). Conclusions: In this relatively large cohort of early-stage NSCLC patients, we did not detect significant associations between p16 and DAP kinase promoter methylation and clinical outcome. Further subset analyses stratified by gender and histology will be performed. The prognostic role of these biomarkers in NSCLC remains unclear. No significant financial relationships to disclose.


Blood ◽  
2010 ◽  
Vol 115 (15) ◽  
pp. 3098-3108 ◽  
Author(s):  
Thomas A. Paul ◽  
Juraj Bies ◽  
Donald Small ◽  
Linda Wolff

Abstract DNA hypermethylation of the p15INK4b tumor suppressor gene is commonly observed in acute myeloid leukemia (AML). Repressive histone modifications and their associated binding proteins have been implicated in the regulation of DNA methylation and the transcriptional repression of genes with DNA methylation. We have used high-density chromatin immunoprecipitation-on-chip to determine the histone modifications that normally regulate p15INK4b expression in AML cells and how these marks are altered in cells that have p15INK4b DNA methylation. In AML patient blasts without p15INK4b DNA methylation, a bivalent pattern of active (H3K4me3) and repressive (H3K27me3) modifications exist at the p15INK4b promoter. AML patient blasts with p15INK4b DNA methylation lose H3K4me3 at p15INK4b and become exclusively marked by H3K27me3. H3K27me3, as well as EZH2, extends throughout p14ARF and p16INK4a, indicating that polycomb repression of p15INK4b is a common feature in all AML blasts irrespective of the DNA methylation status of the gene. Reactivation of p15INK4b expression in AML cell lines and patient blasts using 5-aza-2′-deoxycytidine (decitabine) and trichostatin A increased H3K4me3 and maintained H3K27me3 enrichment at p15INK4b. These data indicate that AML cells with p15INK4b DNA methylation have an altered histone methylation pattern compared with unmethylated samples and that these changes are reversible by epigenetic drugs.


Endocrinology ◽  
2008 ◽  
Vol 149 (11) ◽  
pp. 5599-5609 ◽  
Author(s):  
Erling A. Hoivik ◽  
Linda Aumo ◽  
Reidun Aesoy ◽  
Haldis Lillefosse ◽  
Aurélia E. Lewis ◽  
...  

Steroidogenic factor 1 (SF1) is expressed in a time- and cell-specific manner in the endocrine system. In this study we present evidence to support that methylation of CpG sites located in the proximal promoter of the gene encoding SF1 contributes to the restricted expression pattern of this nuclear receptor. DNA methylation analyses revealed a nearly perfect correlation between the methylation status of the proximal promoter and protein expression, such that it was hypomethylated in cells that express SF1 but hypermethylated in nonexpressing cells. Moreover, in vitro methylation of this region completely repressed reporter gene activity in transfected steroidogenic cells. Bisulfite sequencing of DNA from embryonic tissue demonstrated that the proximal promoter was unmethylated in the developing testis and ovary, whereas it was hypermethylated in tissues that do not express SF1. Together these results indicate that the DNA methylation pattern is established early in the embryo and stably inherited thereafter throughout development to confine SF1 expression to the appropriate tissues. Chromatin immunoprecipitation analyses revealed that the transcriptional activator upstream stimulatory factor 2 and RNA polymerase II were specifically recruited to this DNA region in cells in which the proximal promoter is hypomethylated, providing functional support for the fact that lack of methylation corresponds to a transcriptionally active gene. In conclusion, we identified a region within the SF1/Sf1 gene that epigenetically directs cell-specific expression of SF1.


Sign in / Sign up

Export Citation Format

Share Document