scholarly journals Characteristics of Humidity-Temperature Changing in the Below-Grade Concrete Structure by Applying Waterproofing Materials on the Exterior Wall

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Sang-Mook Chang ◽  
Sang-Keun Oh ◽  
Deok-Suk Seo ◽  
Sung-Min Choi

The water leakage in an underground space cannot easily be repaired owing to the characteristics of the underground space, which not only causes continuous inconvenience to the apartment residents but also facilitates condensation. Thus, the effects of different waterproofing methods in underground spaces on changes in temperature and humidity should be quantitatively studied to establish strong measures for the condensation issue. In this study, two types of specimens were produced separately by dividing the waterproofing materials applied to underground structures into exterior and interior waterproofing construction methods; thereafter, changes in the temperature and humidity inside the specimens were observed. The test results of the evaluation regarding condensation in underground structures indicated that when exterior waterproofing materials are applied, thermal insulation maintains a steady interior temperature and keeps the humidity at an appropriate level, thereby preventing the creation of an environment conducive to the occurrence of condensation.

Author(s):  
Ibrahim Rizki ◽  
Kustanto Kustanto ◽  
Sri Siswanti

Hatching egg is important in the creation of excellent seeds. The accuracy of care of room temperature conditions and microcontroller-based monitoring system is one of the first steps to meet the needs of quality quail seeds in the market. At the same time naturally, it is very difficult, because the parent quail is only able to incubate about 5 eggs. The use of automatic egg hatchery is one of the solutions. In this Scripsir research is made automatic quail egg machine based on microcontroller atmega328. The control is able to control the temperature and humidity needed in hatching eggs. From the control result using a microcontroller, lamp and fan can be adjusted according to the temperature of the room on the egg hatch is by automatic control of the lamp life and the fan. Test results showed that an increase in hatching eggs by 13%.Keywords: Hatching eggs, Monitoring system, Climate control, Microcontroller.


Author(s):  
Dominik Suza ◽  
Johann Kollegger ◽  
Harald S. Müller

<p>The standard creep and shrinkage strain measurements of concrete are usually conducted in a laboratory with constant temperature and humidity with a low variation. The creep and shrinkage measurements are conducted over a few months with the expectation that small concrete specimens can sufficiently describe the evolution of the rheology effects on a large multi-span bridge in the course of its operating life.</p><p>The monitoring of real bridge structures shows the actual progression of the deflections and concrete strains. Unfortunately the evaluation and interpretation of the measured values is complicated. The idea of the scientific Creep &amp; Shrinkage project was to combine the two described situations (laboratory experiments and monitoring of real bridge structures) creating an experimental setup which would benefit from the advantages of both approaches.</p><p>In order to achieve conformity of the measured test results with those of theoretical models (MC 2010, EC) it was necessary to upgrade the current models to include the effects of changing temperature and humidity. Within this paper the upgrade of the current standard models to include changing environment conditions will be elaborated, in addition to an explanation of the method used to separate shrinkage strains from the temperature strains from the measured data. The measured concrete expansion coefficients will also be discussed.</p>


2013 ◽  
Vol 405-408 ◽  
pp. 2438-2442
Author(s):  
Yan Feng Li ◽  
Cong Cong Xu ◽  
Xue Fei Xing ◽  
Jin Zhang ◽  
Cheng Hu

Fire overflow on exterior wall with thermal insulation system has been studied by numerical simulation. The spread laws of fire overflow are analyzed through the temperature distribution near the window. The computational results are compared with those of test in the Exterior Insulation Fire Barrier Technical Guidelines (EIFBTG). It has been found that the calculated maximum temperature points is closed to the test on the first floor, the first ceiling, and the points near the above two windows. However, there are differences between two kinds of results above two floors and ceilings, and the points near the first window. It has also shown that when the HHR is 7.5KW, the scope of damage of exterior thermal insulation layer is about 15 square meters near the window. The research would provide reference for fire protection design of exterior wall thermal insulation in the high-rise buildings.


2013 ◽  
Vol 785-786 ◽  
pp. 191-198
Author(s):  
Li Jun Li ◽  
Feng Li ◽  
Ze Jiang Zhang

Different flame retardant contents of polyurethane rigid foam (PRF) were prepared in this paper. Combustion performances of PRF were tested by cone calorimeter (CONE). Fire risk of PRF was evaluated based on Analytic Hierarchy Process (AHP). The evaluation results were compared with the traditional LOI results. It was found that the evaluation method based on AHP combined with CONE test results for evaluating fire hazard of thermal insulation material for exterior walls of buildings is more accurate and objective compared with the method of the traditional LOI.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4778
Author(s):  
Carla Matthäus ◽  
Nadine Kofler ◽  
Thomas Kränkel ◽  
Daniel Weger ◽  
Christoph Gehlen

Lightweight mortar extrusion enables the production of monolithic exterior wall components with improved thermal insulation by installing air chambers and reduced material demand compared to conventional construction techniques. However, without reinforcement, the systems are not capable of bearing high flexural forces and, thus, the application possibilities are limited. Furthermore, the layer bonding is a weak spot in the system. We investigate a reinforcement strategy combining fibers in the mortar matrix with vertically inserted elements to compensate the layer bonding. By implementing fibers in the extruded matrix, the flexural strength can be increased almost threefold parallel to the layers. However, there is still an anisotropy between the layers as fibers are oriented during deposition and the layer bond is still mainly depending on hydration processes. This can be compensated by the vertical insertion of reinforcement elements in the freshly deposited layers. Corrugated wire fibers as well as short steel reinforcement elements were suitable to increase the flexural strength between the layers. As shown, the potential increase in flexural strength could be of a factor six compared to the reference (12 N/mm2 instead of 1.9 N/mm2). Thus, the presented methods reduce anisotropy in flexural strength due to layered production.


2018 ◽  
Vol 163 ◽  
pp. 08004 ◽  
Author(s):  
Ewa Sudoł ◽  
Dawid Dębski ◽  
Renata Zamorowska ◽  
Barbara Francke

In the paper the results of an experimental program intended to determine factors influencing the impact resistance of the External Thermal Insulation Composite Systems (ETICS) were presented. For the research the systems based on polystyrene have been chosen. The insulation material was faced with a rendering consisting of base coat reinforced with standard or armored glass fibre mesh and silicone or silicone-silicate binders as finishing coats. The influence of various renderings components was evaluated with respect to resistance to hard body impact and resistance to hail. The test results were discussed in the context of the possible impact level on ETICS in use.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3816
Author(s):  
Kim ◽  
Choi ◽  
Park ◽  
He ◽  
Oh

A revised oil leakage evaluation regime is proposed in response to the oil leakage problems of emulsion-based non-curable synthetic polymer rubberized gel (ENC-SPRG) used as a waterproofing material in concrete slabs of residential underground structures. Oil leakage from ENC-SPRG can cause significant economic and environmental damage. As ENC-SPRG waterproofing material is relatively new in the global waterproofing market, a systematic quality control for ENC-SPRG products being manufactured and exported globally is currently non-existent. For the selection of optimal ENC-SPRG, six assessment parameters comprised of averaged and daily average oil leakage mass, averaged and daily average filler content settlement, oil leakage area, and oil leakage duration are proposed. Five ENC-SPRG product specimens are tested to obtain the property values of each parameter. The property values derived from the test results are compared between the tested ENC-SPRG product specimens. With the demonstration of this evaluation regime, a quantified method for a comparative assessment of ENC-SPRG type waterproofing materials is established.


2016 ◽  
Vol 843 ◽  
pp. 17-24
Author(s):  
Boris A. Kartozia ◽  
Andrey V. Korchak

The basic notion underlying urban underground development is that underground space is a non-renewable resource, therefore planning its use must be done in a sustainable, environmentally-responsible manner with due account taken of economic, functional, social, and legal aspects. This paper addresses issues related to the planning, siting, design, construction, operation and maintenance of underground structures in the city of Moscow. The mechanism of the interaction between an underground structure and the surrounding rock masses is described. It is shown that underground engineering can be significantly enhanced through the use of expert systems. The paper also discusses the need for changes to the legal framework for the use of urban underground space.


2015 ◽  
Vol 1101 ◽  
pp. 36-39 ◽  
Author(s):  
Xiu Fang Ye ◽  
Dong Chu Chen ◽  
Meng Lei Chang ◽  
Qi Hua Liang ◽  
Qi Peng Lu

According to the mechanism of thermal insulation, closed pore perlite, hollow glass microsphere and nanoantimony tin oxide (ATO) powder three different kinds of functional fillers were adopted respectively to prepare obstructive, reflective and radiative thermal insulation coating base on polyvinylidene fluoride emulsion, and how the category and content of functional fillers effect the thermal insulation performance of the fluorocarbon thermal insulation coating (FTIC) was investigate. The test results showed that, all the three functional fillers has an significant effect on the thermal insulation performance of FTIC.


Sign in / Sign up

Export Citation Format

Share Document