scholarly journals Characterization and Alignment of Carbon Nanofibers under Shear Force in Microchannel

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Jinshan Yang ◽  
Shaoming Dong ◽  
David Webster ◽  
John Gilmore ◽  
Chengying Xu

This work presents a novel method to align CNFs by using shear forces in microchannels. Effect of two different microchannel sizes (1 mm × 0.1 mm and 1 mm × 0.2 mm) on CNFs alignment is investigated. SEM images of CNFs preform display significant alignment by both microchannels, which can be interpreted using a second-order alignment tensor and a manual angle meter. In the second-order alignment tensor description, an elongated ellipse can signify high degree of alignment in the direction of the major axis. When the microchannel size is 1 mm × 0.2 mm, the lengths of major and minor axes of the ellipse are 0.982 to 0.018. An angle meter manually shows that 85% of the CNFs are aligned in the direction between 60° and 90° when the microchannel is 1 mm × 0.2 mm. Both methods can demonstrate that better alignment of CNFs can be obtained using the 1 mm × 0.2 mm microchannel.

Author(s):  
C.H. Zhong ◽  
Sung Yi

Abstract Ball shear forces of plastic ball grid array (PBGA) packages are found to decrease after reliability test. Packages with different ball pad metallurgy form different intermetallic compounds (IMC) thus ball shear forces and failure modes are different. The characteristic and dynamic process of IMC formed are decided by ball pad metallurgy which includes Ni barrier layer and Au layer thickness. Solder ball composition also affects IMC formation dynamic process. There is basically no difference in ball shear force and failure mode for packages with different under ball pad metallurgy before reliability test. However shear force decreased and failure mode changed after reliability test, especially when packages exposed to high temperature. Major difference in ball shear force and failure mode was found for ball pad metallurgy of Ni barrier layer including Ni-P, pure Ni and Ni-Co. Solder ball composition was found to affect the IMC formation rate.


Author(s):  
Aadel Howedi ◽  
Ahmad Lotfi ◽  
Amir Pourabdollah

AbstractHuman activity recognition (HAR) is used to support older adults to live independently in their own homes. Once activities of daily living (ADL) are recognised, gathered information will be used to identify abnormalities in comparison with the routine activities. Ambient sensors, including occupancy sensors and door entry sensors, are often used to monitor and identify different activities. Most of the current research in HAR focuses on a single-occupant environment when only one person is monitored, and their activities are categorised. The assumption that home environments are occupied by one person all the time is often not true. It is common for a resident to receive visits from family members or health care workers, representing a multi-occupancy environment. Entropy analysis is an established method for irregularity detection in many applications; however, it has been rarely applied in the context of ADL and HAR. In this paper, a novel method based on different entropy measures, including Shannon Entropy, Permutation Entropy, and Multiscale-Permutation Entropy, is employed to investigate the effectiveness of these entropy measures in identifying visitors in a home environment. This research aims to investigate whether entropy measures can be utilised to identify a visitor in a home environment, solely based on the information collected from motion detectors [e.g., passive infra-red] and door entry sensors. The entropy measures are tested and evaluated based on a dataset gathered from a real home environment. Experimental results are presented to show the effectiveness of entropy measures to identify visitors and the time of their visits without the need for employing extra wearable sensors to tag the visitors. The results obtained from the experiments show that the proposed entropy measures could be used to detect and identify a visitor in a home environment with a high degree of accuracy.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 564
Author(s):  
Hong Shen ◽  
Longkun Yu ◽  
Xu Jing ◽  
Fengfu Tan

The turbulence moment of order m (μm) is defined as the refractive index structure constant Cn2 integrated over the whole path z with path-weighting function zm. Optical effects of atmospheric turbulence are directly related to turbulence moments. To evaluate the optical effects of atmospheric turbulence, it is necessary to measure the turbulence moment. It is well known that zero-order moments of turbulence (μ0) and five-thirds-order moments of turbulence (μ5/3), which correspond to the seeing and the isoplanatic angles, respectively, have been monitored as routine parameters in astronomical site testing. However, the direct measurement of second-order moments of turbulence (μ2) of the whole layer atmosphere has not been reported. Using a star as the light source, it has been found that μ2 can be measured through the covariance of the irradiance in two receiver apertures with suitable aperture size and aperture separation. Numerical results show that the theoretical error of this novel method is negligible in all the typical turbulence models. This method enabled us to monitor μ2 as a routine parameter in astronomical site testing, which is helpful to understand the characteristics of atmospheric turbulence better combined with μ0 and μ5/3.


1986 ◽  
Vol 59 (2) ◽  
pp. 683-693 ◽  
Author(s):  
Samuel E. Krug ◽  
Edgar F. Johns

The second-order factors structure of the 16 Personality Factor Questionnaire (16PF) was cross-validated on a large sample ( N = 17,381) of normal males and females. Subjects were sampled across a broad range of ages, socioeconomic levels, education, geographic location, and ethnicity. The purposes of this investigation were (1) to provide a precise definition of 16PF second-order factor structure, (2) to shed additional light on the nature of two second-order factors that have been previously identified but described as “unstable” and “poorly reproduced,” and (3) to determine the extent to which common factor estimation formulas for men and women would prove satisfactory for applied work. The resulting solutions were congruent with previous studies and showed a high degree of simple structure. Support was provided for one, but not both, of the two additional second-order factors. Results also supported the use of simplified estimation formulas for applied use.


2014 ◽  
Vol 1651 ◽  
Author(s):  
Thomas Hochrainer

ABSTRACTIn the current paper we present a continuum theory of dislocations based on the second-order alignment tensor in conjunction with the classical dislocation density tensor (Kröner-Nye-tensor) and a scalar dislocation curvature measure. The second-order alignment tensor is a symmetric second order tensor characterizing the orientation distribution of dislocations in elliptic form. It is closely connected to total densities of screw and edge dislocations introduced in the literature. The scalar dislocation curvature density is a conserved quantity the integral of which represents the total number of dislocations in the system. The presented evolution equations of these dislocation density measures partly parallel earlier developed theories based on screw-edge decompositions but handle line length changes and segment reorientation consistently. We demonstrate that the presented equations allow predicting the evolution of a single dislocation loop in a non-trivial velocity field.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 868 ◽  
Author(s):  
Jorge Ramos-Hernández ◽  
Juan Ragazzo-Sánchez ◽  
Montserrat Calderón-Santoyo ◽  
Rosa Ortiz-Basurto ◽  
Cristina Prieto ◽  
...  

High degree of polymerization Agave fructans (HDPAF) are presented as a novel encapsulating material. Electrospraying coating (EC) was selected as the encapsulation technique and β-carotene as the model bioactive compound. For direct electrospraying, two encapsulation methodologies (solution and emulsion) were proposed to find the formulation which provided a suitable particle morphology and an adequate concentration of β-carotene encapsulated in the particles to provide a protective effect of β-carotene by the nanocapsules. Scanning electron microscopy (SEM) images showed spherical particles with sizes ranging from 440 nm to 880 nm depending on the concentration of HDPAF and processing parameters. FTIR analysis confirmed the interaction and encapsulation of β-carotene with HDPAF. The thermal stability of β-carotene encapsulated in HDPAF was evidenced by thermogravimetric analysis (TGA). The study showed that β-carotene encapsulated in HDPAF by the EC method remained stable for up to 50 h of exposure to ultraviolet (UV) light. Therefore, HDPAF is a viable option to formulate nanocapsules as a new encapsulating material. In addition, EC allowed for increases in the ratio of β-carotene:polymer, as well as its photostability.


1990 ◽  
Vol 214 ◽  
Author(s):  
Y. M. Chen ◽  
B. K. Mandal ◽  
J. Y. Lee ◽  
P. Miller ◽  
J. Kumar ◽  
...  

ABSTRACTWe report a novel method to obtain stable second order nonlinear optical (NLO) properties in polymeric thin films. Photocross-linking between the NLO active molecules and a photoreactive polymer is achieved by UV irradiation subsequent to poling. The thin film exhibits a nonlinear coefficient d33of 16.5 pm/V at a doping level of 20% by weight of NLO active molecules and possesses quite stable second order nonlinear optical properties


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1026 ◽  
Author(s):  
Xin He ◽  
Xiaoling Xu ◽  
Qian Wan ◽  
Guangxu Bo ◽  
Yunjun Yan

Nonisocyanate polyurethane (NIPU) is a research hotspot in polyurethane applications because it does not use phosgene. Herein, a novel method of solvent- and catalyst-free synthesis of a hybrid nonisocyanate polyurethane (HNIPU) is proposed. First, four diamines were used to react with ethylene carbonate to obtain four bis(hydroxyethyloxycarbonylamino)alkane (BHA). Then, BHA reacted with dimer acid under condensation in the melt to prepare four nonisocynate polyurethane prepolymers. Further, the HNIPUs were obtained by crosslinking prepolymers and resin epoxy and cured with the program temperature rise. In addition, four amines and two resin epoxies were employed to study the effects and regularity of HNIPUs. According to the results from thermal and dynamic mechanical analyses, those HNIPUs showed a high degree of thermal stability, and the highest 5% weight loss reached about 350 °C. More importantly, the utilization of these green raw materials accords with the concept of sustainable development. Further, the synthetic method and HNIPUs don’t need isocyanates, catalysts, or solvents.


2019 ◽  
Vol 488 (4) ◽  
pp. 5580-5593 ◽  
Author(s):  
Viraj Pandya ◽  
Joel Primack ◽  
Peter Behroozi ◽  
Avishai Dekel ◽  
Haowen Zhang ◽  
...  

ABSTRACT Hubble Space Telescope observations show that low-mass ($M_*=10^9\!-\!10^{10}\, \mathrm{M}_{\odot }$) galaxies at high redshift (z = 1.0–2.5) tend to be elongated (prolate) rather than disky (oblate) or spheroidal. This is explained in zoom-in cosmological hydrodynamical simulations by the fact that these galaxies are forming in cosmic web filaments where accretion happens preferentially along the direction of elongation. We ask whether the elongated morphology of these galaxies allows them to be used as effective tracers of cosmic web filaments at high redshift via their intrinsic alignments. Using mock light cones and spectroscopically confirmed galaxy pairs from the Cosmic Assembly Near-infared Deep Extragalactic Legacy Survey (CANDELS), we test two types of alignments: (1) between the galaxy major axis and the direction to nearby galaxies of any mass and (2) between the major axes of nearby pairs of low-mass, likely prolate, galaxies. The mock light cones predict strong signals in 3D real space, 3D redshift space, and 2D projected redshift space for both types of alignments (assuming prolate galaxy orientations are the same as those of their host prolate haloes), but we do not detect significant alignment signals in CANDELS observations. However, we show that spectroscopic redshifts have been obtained for only a small fraction of highly elongated galaxies, and accounting for spectroscopic incompleteness and redshift errors significantly degrades the 2D mock signal. This may partly explain the alignment discrepancy and highlights one of several avenues for future work.


Sign in / Sign up

Export Citation Format

Share Document