scholarly journals Antioxidant-Enhancing Property of the Polar Fraction of Mangosteen Pericarp Extract and Evaluation of Its Safety in Humans

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Wichit Suthammarak ◽  
Pornpayom Numpraphrut ◽  
Ratiya Charoensakdi ◽  
Neelobol Neungton ◽  
Vachara Tunrungruangtavee ◽  
...  

Crude extract from the pericarp of the mangosteen (mangosteen extract [ME]) has exhibited several medicinal properties in both animal models and human cell lines. Interestingly, the cytotoxic activities were always observed in nonpolar fraction of the extract whereas the potent antioxidant was often found in polar fraction. Although it has been demonstrated that the polar fraction of ME exhibited the antioxidant activity, the safety of the polar fraction of ME has never been thoroughly investigated in humans. In this study, we investigated the safety of oral administration of the polar fraction of ME in 11 healthy Thai volunteers. During a 24-week period of the study, only minor and tolerable side effects were reported; no serious side effects were documented. Blood chemistry studies also showed no liver damage or kidney dysfunction in all subjects. We also demonstrated antioxidant property of the polar fraction of ME bothin vitroandin vivo. Interestingly, oral administration of the polar fraction of ME enhanced the antioxidant capability of red blood cells and decreased oxidative damage to proteins within red blood cells and whole blood.

Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


Diagnostics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Anastasia Maslianitsyna ◽  
Petr Ermolinskiy ◽  
Andrei Lugovtsov ◽  
Alexandra Pigurenko ◽  
Maria Sasonko ◽  
...  

Coronary heart disease (CHD) has serious implications for human health and needs to be diagnosed as early as possible. In this article in vivo and in vitro optical methods are used to study blood properties related to the aggregation of red blood cells in patients with CHD and comorbidities such as type 2 diabetes mellitus (T2DM). The results show not only a significant difference of the aggregation in patients compared to healthy people, but also a correspondence between in vivo and in vitro parameters. Red blood cells aggregate in CHD patients faster and more numerously; in particular the aggregation index increases by 20 ± 7%. The presence of T2DM also significantly elevates aggregation in CHD patients. This work demonstrates multimodal diagnostics and monitoring of patients with socially significant pathologies.


2021 ◽  
Author(s):  
Andrew D. Beale ◽  
Priya Crosby ◽  
Utham K. Valekunja ◽  
Rachel S. Edgar ◽  
Johanna E. Chesham ◽  
...  

AbstractCellular circadian rhythms confer daily temporal organisation upon behaviour and physiology that is fundamental to human health and disease. Rhythms are present in red blood cells (RBCs), the most abundant cell type in the body. Being naturally anucleate, RBC circadian rhythms share key elements of post-translational, but not transcriptional, regulation with other cell types. The physiological function and developmental regulation of RBC circadian rhythms is poorly understood, however, partly due to the small number of appropriate techniques available. Here, we extend the RBC circadian toolkit with a novel biochemical assay for haemoglobin oxidation status, termed “Bloody Blotting”. Our approach relies on a redox-sensitive covalent haem-haemoglobin linkage that forms during cell lysis. Formation of this linkage exhibits daily rhythms in vitro, which are unaffected by mutations that affect the timing of circadian rhythms in nucleated cells. In vivo, haemoglobin oxidation rhythms demonstrate daily variation in the oxygen-carrying and nitrite reductase capacity of the blood, and are seen in human subjects under controlled laboratory conditions as well as in freely-behaving humans. These results extend our molecular understanding of RBC circadian rhythms and suggest they serve an important physiological role in gas transport.


2017 ◽  
Vol 117 (07) ◽  
pp. 1402-1411 ◽  
Author(s):  
Laura Beth Mann Dosier ◽  
Vikram J. Premkumar ◽  
Hongmei Zhu ◽  
Izzet Akosman ◽  
Michael F. Wempe ◽  
...  

SummaryThe system L neutral amino acid transporter (LAT; LAT1, LAT2, LAT3, or LAT4) has multiple functions in human biology, including the cellular import of S-nitrosothiols (SNOs), biologically active derivatives of nitric oxide (NO). SNO formation by haemoglobin within red blood cells (RBC) has been studied, but the conduit whereby a SNO leaves the RBC remains unidentified. Here we hypothesised that SNO export by RBCs may also depend on LAT activity, and investigated the role of RBC LAT in modulating SNO-sensitive RBC-endothelial cell (EC) adhesion. We used multiple pharmacologic inhibitors of LAT in vitro and in vivo to test the role of LAT in SNO export from RBCs and in thereby modulating RBC-EC adhesion. Inhibition of human RBC LAT by type-1-specific or nonspecific LAT antagonists increased RBC-endothelial adhesivity in vitro, and LAT inhibitors tended to increase post-transfusion RBC sequestration in the lung and decreased oxygenation in vivo. A LAT1-specific inhibitor attenuated SNO export from RBCs, and we demonstrated LAT1 in RBC membranes and LAT1 mRNA in reticulocytes. The proadhesive effects of inhibiting LAT1 could be overcome by supplemental L-CSNO (S-nitroso-L-cysteine), but not D-CSNO or L-Cys, and suggest a basal anti-adhesive role for stereospecific intercellular SNO transport. This study reveals for the first time a novel role of LAT1 in the export of SNOs from RBCs to prevent their adhesion to ECs. The findings have implications for the mechanisms of intercellular SNO signalling, and for thrombosis, sickle cell disease, and post-storage RBC transfusion, when RBC adhesivity is increased.


2010 ◽  
Vol 53 (3) ◽  
pp. 575-582 ◽  
Author(s):  
Jacques Natan Grinapel Frydman ◽  
Adenilson de Souza da Fonseca ◽  
Vanessa Câmara da Rocha ◽  
Monica Oliveira Benarroz ◽  
Gabrielle de Souza Rocha ◽  
...  

This work evaluated the effect of in vitro and in vivo treatment with ASA on the morphology of the red blood cells. Blood samples or Wistar rats were treated with ASA for one hour. Blood samples or animals treated with saline were used as control group. Blood smears were prepared, fixed, stained and the qualitative and quantitative morphology of red blood cells were evaluated under optical microscopy. Data showed that the in vitro treatment for one hour with ASA at higher dose used significantly (p<0.05) modified the perimeter/area ratio of the red blood cells. No morphological alterations were obtained with the in vivo treatment. ASA use at highest doses could interfere on shape of red blood cells.


2019 ◽  
Vol 22 (1) ◽  
pp. 18-26
Author(s):  
Sayema Khanum ◽  
Md Shahid Sarwar ◽  
Mohammad Safiqul Islam

Wedelia chinensis is a widely used anti-inflammatory and hepatoprotective medicinal plant in Bangladesh. In this study, analgesic, neurological, antioxidant and cytotoxic activities of the ethanolic extract of leaf and stem bark of W. chinensis were investigated. Oral administration of the ethanolic extract of W. chinensis (200- and 300-mg/kg body weight) was investigated on animal model for neurological activity using open field test and hole cross test. Acetic acid induced writhing method was used to assess the analgesic activity. DPPH (1,1-diphenyl, 2-picryl hydrazyl) radical scavenging assay was used for determining the antioxidant activity, while brine shrimp lethality bioassay was used for investigating cytotoxicity. The ethanol extract of the plant produced significant reduction (P<0.05) of locomotion in both doses (200- and 300-mg/kg body weight) indicating pronounced neurological activity. Oral administration of alcoholic leaves and stem extracts significantly (p < 0.05) inhibited writhing response in mice. The percentage of scavenging of DPPH free radical was found to be concentration dependent with IC50 value of 44.10 ± 0.65 and 38.96 ± 0.50 μg/ml for leaves and stem extracts, respectively. Our findings indicate that W. chinensis may be a source of natural antioxidant with potent analgesic, neurological and cytotoxic activities. Bangladesh Pharmaceutical Journal 22(1): 18-26, 2019


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Bibianne Waiganjo ◽  
Gervason Moriasi ◽  
Jared Onyancha ◽  
Nelson Elias ◽  
Francis Muregi

Malaria is a deadly disease caused by a protozoan parasite whose mode of transmission is through a female Anopheles mosquito. It affects persons of all ages; however, pregnant mothers, young children, and the elderly suffer the most due to their dwindled immune state. The currently prescribed antimalarial drugs have been associated with adverse side effects ranging from intolerance to toxicity. Furthermore, the costs associated with conventional approach of managing malaria are arguably high especially for persons living in low-income countries, hence the need for alternative and complementary approaches. Medicinal plants offer a viable alternative because of their few associated side effects, are arguably cheaper, and are easily accessible. Based on the fact that studies involving antimalarial medicinal plants as potential sources of efficacious and cost-effective pharmacotherapies are far between, this research was designed to investigate antiplasmodial and cytotoxic activities of organic and aqueous extracts of selected plants used by Embu traditional medicine practitioners to treat malaria. The studied plants included Erythrina abyssinica (stem bark), Schkuhria pinnata (whole plant), Sterculia africana (stem bark), Terminalia brownii (leaves), Zanthoxylum chalybeum (leaves), Leonotis mollissima (leaves), Carissa edulis (leaves), Tithonia diversifolia (leaves and flowers), and Senna didymobotrya (leaves and pods). In vitro antiplasmodial activity studies of organic and water extracts were carried out against chloroquine-sensitive (D6) and chloroquine-resistance (W2) strains of Plasmodium falciparum. In vivo antiplasmodial studies were done by Peter’s four-day suppression test to test for their in vivo antimalarial activity against P. berghei. Finally, cytotoxic effects and safety of the studied plant extracts were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) rapid calorimetric assay technique. The water and methanolic extracts of T. brownii and S. africana and dichloromethane extracts of E. abyssinica, S. pinnata, and T. diversifolia leaves revealed high in vitro antiplasmodial activities (IC50≤10 μg/ml). Further, moderate in vivo antimalarial activities were observed for water and methanolic extracts of L. mollissima and S. africana and for dichloromethane extracts of E. abyssinica and T. diversifolia leaves. In this study, aqueous extracts of T. brownii and S. africana demonstrated high antiplasmodial activity and high selectivity indices values (SI≥10) and were found to be safe. It was concluded that T. brownii and S. africana aqueous extracts were potent antiplasmodial agents. Further focused studies geared towards isolation of active constituents and determination of in vivo toxicities to ascertain their safety are warranted.


1971 ◽  
Vol 118 (545) ◽  
pp. 465-466 ◽  
Author(s):  
Ngo Tran ◽  
Marcel Laplante ◽  
Etienne Lebel

The decarboxylation of 3, 4-dihydroxyphenyl-alanine (Dopa) to dopamine has been shown previously in animal and human tissues in both in vitro and in vivo studies (Sourkes, 1966; Vogel et al., 1970). However, very little information is available as to whether or not the decarboxylation of Dopa occurs in human red blood cells (RBC). In the present experiment we demonstrated this change in RBC from normals and from schizophrenics. An ionization chamber method was used for an instantaneous and continuous measurement of 14CO2 production from DL-dopa-carboxyl-14C by RBC in vitro.


2021 ◽  
Author(s):  
Choukri Mamoun ◽  
Anasuya C. Pal ◽  
Isaline Renard ◽  
Pallavi Singh ◽  
Pratap Vydyam ◽  
...  

Hematozoa are a subclass of protozoan parasites that invade and develop within vertebrate red blood cells to cause the pathological symptoms associated with diseases of both medical and veterinary importance such as malaria and babesiosis. A major limitation in the study of the most prominent hematozoa, Plasmodium spp, the causative agents of malaria, is the lack of a broadly accessible mouse model to evaluate parasite infection in vivo as is the case for P. falciparum or altogether the lack of an in vitro culture and mouse models as is the case for P. vivax, P. malariae and P. ovale. Similarly, no in vitro culture system exists for Babesia microti, the predominant agent of human babesiosis. In this study, we show that human red blood cells infected with the human pathogen Babesia duncani continuously propagated in culture, as well as merozoites purified from parasite cultures, can cause lethal infection in immunocompetent C3H/HeJ mice. Furthermore, highly reproducible parasitemia and survival outcomes were established using specific parasite loads and different mouse genetic backgrounds. Using the combined in culturein mouse (ICIM) model of B. duncani infection, we demonstrate that current recommended combination therapies for the treatment of human babesiosis, while synergistic in cell culture, have weak potency in vitro and failed to clear infection or prevent death in mice. Interestingly, using the ICIM model, we identified two new endochin-like quinolone prodrugs, ELQ-331 and ELQ468, that alone or in combination with atovaquone are highly efficacious against B. duncani and B. microti. The novelty, ease of use and scalability of the B. duncani ICIM dual model make it an ideal system to study intraerythrocytic parasitism by protozoa, unravel the molecular mechanisms underlying parasite virulence and pathogenesis, and accelerate the development of innovative therapeutic strategies that could be translated to unculturable parasites and important pathogens for which an animal model is lacking.


Sign in / Sign up

Export Citation Format

Share Document