scholarly journals Alterations in Red Blood Cell Functionality Induced by an Indole Scaffold Containing a Y-Iminodiketo Moiety: Potential Antiproliferative Conditions

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Angela Scala ◽  
Silvana Ficarra ◽  
Annamaria Russo ◽  
Davide Barreca ◽  
Elena Giunta ◽  
...  

We have recently proposed a new erythrocyte-based model of study to predict the antiproliferative effects of selected heterocyclic scaffolds. Starting from the metabolic similarity between erythrocytes and cancer cells, we have demonstrated how the metabolic derangement induced by an indolone-based compound (DPIT) could be related to its antiproliferative effects. In order to prove the validity of our biochemical approach, in the present study the effects on erythrocyte functionality of its chemical precursor (PID), whose synthesis we reported, were investigated. The influence of the tested compound on band 3 protein (B3), oxidative state, ATP efflux, caspase 3, metabolism, intracellular pH, and Ca2+homeostasis has been evaluated. PID crosses the membrane localizing into the cytosol, increases anion exchange, induces direct caspase activation, shifts the erythrocytes towards an oxidative state, and releases less ATP than in normal conditions. Analysis of phosphatidylserine externalization shows that PID slightly induces apoptosis. Our findings indicate that, due to its unique features, erythrocyte responses to exogenous molecular stimuli can be fruitfully correlated at structurally more complex cells, such as cancer cells. Overall, our work indicates that erythrocyte is a powerful study tool to elucidate the biochemical/biological effects of selected heterocycles opening considerable perspectives in the field of drug discovery.

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5716
Author(s):  
Jelili A. Badmus ◽  
Okobi E. Ekpo ◽  
Jyoti R. Sharma ◽  
Nicole Remaliah S. Sibuyi ◽  
Mervin Meyer ◽  
...  

Holamine and funtumine, steroidal alkaloids with strong and diverse pharmacological activities are commonly found in the Apocynaceae family of Holarrhena. The selective anti-proliferative and cell cycle arrest effects of holamine and funtumine on cancer cells have been previously reported. The present study evaluated the anti-proliferative mechanism of action of these two steroidal alkaloids on cancer cell lines (HT-29, MCF-7 and HeLa) by exploring the mitochondrial depolarization effects, reactive oxygen species (ROS) induction, apoptosis, F-actin perturbation, and inhibition of topoisomerase-I. The apoptosis-inducing effects of the compounds were studied by flow cytometry using the APOPercentageTM dye and Caspase-3/7 Glo assay kit. The two compounds showed a significantly greater cytotoxicity in cancer cells compared to non-cancer (normal) fibroblasts. The observed antiproliferative effects of the two alkaloids presumably are facilitated through the stimulation of apoptosis. The apoptotic effect was elicited through the modulation of mitochondrial function, elevated ROS production, and caspase-3/7 activation. Both compounds also induced F-actin disorganization and inhibited topoisomerase-I activity. Although holamine and funtumine appear to have translational potential for the development of novel anticancer agents, further mechanistic and molecular studies are recommended to fully understand their anticancer effects.


2020 ◽  
Vol 20 (4) ◽  
pp. 504-517
Author(s):  
Yu-Lan Li ◽  
Xin-Li Gan ◽  
Rong-Ping Zhu ◽  
Xuehong Wang ◽  
Duan-Fang Liao ◽  
...  

Objective: To overcome the disadvantages of cisplatin, numerous platinum (Pt) complexes have been prepared. However, the anticancer activity and mechanism of Pt(II) complexed with 2-benzoylpyridine [Pt(II)- Bpy]: [PtCl2(DMSO)L] (DMSO = dimethyl sulfoxide, L = 2-benzoylpyridine) in cancer cells remain unknown. Methods: Pt(II)-Bpy was synthesized and characterized by spectrum analysis. Its anticancer activity and underlying mechanisms were demonstrated at the cellular, molecular, and in vivo levels. Results: Pt(II)-Bpy inhibited tumor cell growth, especially HepG2 human liver cancer cells, with a halfmaximal inhibitory concentration of 9.8±0.5μM, but with low toxicity in HL-7702 normal liver cells. Pt(II)- Bpy induced DNA damage, which was demonstrated through a marked increase in the expression of cleavedpoly (ADP ribose) polymerase (PARP) and gamma-H2A histone family member X and a decrease in PARP expression. The interaction of Pt(II)-Bpy with DNA at the molecular level was most likely through an intercalation mechanism, which might be evidence of DNA damage. Pt(II)-Bpy initiated cell cycle arrest at the S phase in HepG2 cells. It also caused severe loss of the mitochondrial membrane potential; a decrease in the expression of caspase-9 and caspase-3; an increase in reactive oxygen species levels; the release of cytochrome c and apoptotic protease activation factor; and the activation of caspase-9 and caspase-3 in HepG2 cells, which in turn resulted in apoptosis. Meanwhile, changes in p53 and related proteins were observed including the upregulation of p53, the phosphorylation of p53, p21, B-cell lymphoma-2-associated X protein, and NOXA; and the downregulation of B-cell lymphoma 2. Moreover, Pt(II)-Bpy displayed marked inhibitory effects on tumor growth in the HepG2 nude mouse model. Conclusion: Pt(II)-Bpy is a potential candidate for cancer chemotherapy.


2019 ◽  
Vol 18 (15) ◽  
pp. 2124-2130
Author(s):  
Amany Belal

Background: For further exploration of the promising pyrrolizine scaffold and in continuation of our previous work, that proved the potential anticancer activity of the hit compound I, a new series of pyrrolizines 2-5 and 7-9 were designed and synthesized. Methods: Structures of the new compounds were confirmed by IR, 1H-NMR, 13C-NMR and elemental analysis. Antitumor activity for the prepared compounds against human breast adenocarcinoma (MCF-7), liver (HEPG2) and colon (HCT116) cancer cell lines was evaluated using SRB assay method. Result: Compounds 2, 3 and 5 were the most potent on colon cancer cells, their IC50 values were less than 5 µM. Compounds 2, 3 and 8 were the most potent on liver cancer cells, their IC50 values were less than 10 µM. As for MCF7, compounds 2, 7, 8 and 9 were the most active with IC50 values less than 10 µM. We can conclude that combining pyrrolizine scaffold with urea gave abroad spectrum anticancer agent 2 against the three tested cell lines. Micronucleus assays showed that compounds 2, 3, 8 are mutagenic and can induce apoptosis. In addition, caspase-3 activation was evaluated and compound 2 showed increase in the level of caspase-3 (9 folds) followed by 3 (8.28 folds) then 8 (7.89 folds). Conclusion: The obtained results encourage considering these three compounds as novel anticancer prototypes.


2019 ◽  
Vol 19 (6) ◽  
pp. 826-837 ◽  
Author(s):  
Pratibha Pandey ◽  
Preeti Bajpai ◽  
Mohammad H. Siddiqui ◽  
Uzma Sayyed ◽  
Rohit Tiwari ◽  
...  

Background:Plant sterols have proven a potent anti-proliferative and apoptosis inducing agent against several carcinomas including breast and prostate cancers. Jab1 has been reported to be involved in the progression of numerous carcinomas. However, antiproliferative effects of sterols against Jab1 in gall bladder cancer have not been explored yet.Objective:In the current study, we elucidated the mechanism of action of stigmasterol regarding apoptosis induction mediated via downregulation of Jab1 protein in human gall bladder cancer cells.Methods:In our study, we performed MTT and Trypan blue assay to assess the effect of stigmasterol on cell proliferation. In addition, RT-PCR and western blotting were performed to identify the effect of stigmasterol on Jab1 and p27 expression in human gall bladder cancer cells. We further performed cell cycle, Caspase-3, Hoechst and FITC-Annexin V analysis, to confirm the apoptosis induction in stigmasterol treated human gall bladder cancer cells.Results:Our results clearly indicated that stigmasterol has up-regulated the p27 expression and down-regulated Jab1 gene. These modulations of genes might occur via mitochondrial apoptosis signaling pathway. Caspase-3 gets activated with the apoptotic induction. Increase in apoptotic cells and DNA were confirmed through annexin V staining, Hoechst staining, and cell cycle analysis.Conclusion:Thus, these results strongly suggest that stigmasterol has the potential to be considered as an anticancerous therapeutic agent against Jab1 in gall bladder cancer.


2020 ◽  
Vol 208 ◽  
pp. 111080 ◽  
Author(s):  
Jorge Andrés Solís-Ruiz ◽  
Anaïs Barthe ◽  
Gilles Riegel ◽  
Rafael Omar Saavedra-Díaz ◽  
Christian Gaiddon ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 332
Author(s):  
Taeyeon Hong ◽  
Jiyeon Ham ◽  
Jisoo Song ◽  
Gwonhwa Song ◽  
Whasun Lim

Brassinin is a phytochemical derived from Chinese cabbage, a cruciferous vegetable. Brassinin has shown anticancer effects on prostate and colon cancer cells, among others. However, its mechanisms and effects on hepatocellular carcinoma (HCC) have not been elucidated yet. Our results confirmed that brassinin exerted antiproliferative effects by reducing proliferating cell nuclear antigen (PCNA) activity, a proliferation indicator and inducing cell cycle arrest in human HCC (Huh7 and Hep3B) cells. Brassinin also increased mitochondrial Ca2+ levels and depolarized the mitochondrial membrane in both Huh7 and Hep3B cells. Moreover, brassinin generated high amounts of reactive oxygen species (ROS) in both cell lines. The ROS scavenger N-acetyl-L-cysteine (NAC) inhibited this brassinin-induced ROS production. Brassinin also regulated the AKT and mitogen-activated protein kinases (MAPK) signaling pathways in Huh7 and Hep3B cells. Furthermore, co-administering brassinin and pharmacological inhibitors for JNK, ERK1/2 and P38 decreased cell proliferation in both HCC cell lines more than the pharmacological inhibitors alone. Collectively, our results demonstrated that brassinin exerts antiproliferative effects via mitochondrial dysfunction and MAPK pathway regulation on HCC cells.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dongxiao Jiang ◽  
Shufei Ding ◽  
Zhujun Mao ◽  
Liyan You ◽  
Yeping Ruan

Abstract Background Colon cancer is a malignant gastrointestinal tumour with high incidence, mortality and metastasis rates worldwide. Aloe-emodin is a monomer compound derived from hydroxyanthraquinone. Aloe-emodin produces a wide range of antitumour effects and is produced by rhubarb, aloe and other herbs. However, the mechanism by which aloe-emodin influences colon cancer is still unclear. We hope these findings will lead to the development of a new therapeutic strategy for the treatment of colon cancer in the clinic. Methods We identified the overlapping targets of aloe-emodin and colon cancer and performed protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. In addition, we selected apoptosis pathways for experimental verification with cell viability, cell proliferation, caspase-3 activity, DAPI staining, cell cycle and western blotting analyses to evaluate the apoptotic effect of aloe-emodin on colon cancer cells. Results The MTT assay and cell colony formation assay showed that aloe-emodin inhibited cell proliferation. DAPI staining confirmed that aloe-emodin induced apoptosis. Aloe-emodin upregulated the protein level of Bax and decreased the expression of Bcl-2, which activates caspase-3 and caspase-9. Furthermore, the protein expression level of cytochrome C increased in a time-dependent manner in the cytoplasm but decreased in a time-dependent manner in the mitochondria. Conclusion These results indicate that aloe-emodin may induce the apoptosis of human colon cancer cells through mitochondria-related pathways.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2099 ◽  
Author(s):  
Reham Samir Hamida ◽  
Gadah Albasher ◽  
Mashael Mohammed Bin-Meferij

Green nanoparticles represent a revolution in bionanotechnology, providing opportunities to fight life-threatening diseases, such as cancer, with less risk to the environment and to human health. Here, for the first time, we systematically investigated the anticancer activity and possible mechanism of novel silver nanoparticles (N-SNPs) synthesized by Nostoc Bahar M against the MCF-7 breast cancer cells, HCT-116 colorectal adenocarcinoma cells, and HepG2 liver cancer cells, using cell viability assays, morphological characterization with inverted light and transmission electron microscopy, antioxidants and enzymes (glutathione peroxidase (GPx), glutathione (GSH), adenosine triphosphatase (ATPase), and lactate dehydrogenase (LDH)), and western blotting (protein kinase B (Akt), phosphorylated-Akt (p-Akt), mammalian target of rapamycin (mTOR), B-cell lymphoma 2 (Bcl-2), tumor suppressor (p53), and caspase 3). N-SNPs decreased the viability of MCF-7, HCT-116, and HepG2 cells, with half-maximal inhibitory concentrations of 54, 56, and 80 µg/mL, respectively. They also significantly increased LDH leakage, enhanced oxidative stress via effects on antioxidative markers, and caused metabolic stress by significantly decreasing ATPase levels. N-SNPs caused extensive ultrastructural alterations in cell and nuclear structures, as well as in various organelles. Furthermore, N-SNPs triggered apoptosis via the activation of caspase 3 and p53, and suppressed the mTOR signaling pathway via downregulating apoptosis-evading proteins in MCF-7, HCT-116, and HepG2 cells. Ultrastructural analysis, together with biochemical and molecular analyses, revealed that N-SNPs enhanced apoptosis via the induction of oxidative stress and/or through direct interactions with cellular structures in all tested cells. The cytotoxicity of Nostoc-mediated SNPs represents a new strategy for cancer treatment via targeting various cell death pathways. However, the potential of N-SNPs to be usable and biocompatible anticancer drug will depend on their toxicity against normal cells.


Sign in / Sign up

Export Citation Format

Share Document