scholarly journals Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Tingting Liu ◽  
Ping Wu ◽  
Chengde Gao ◽  
Pei Feng ◽  
Tao Xiao ◽  
...  

A synergetic effect between carbon nanotubes (CNTs) and graphene on diopside (Di) scaffolds was demonstrated. 3D network architecture in the matrix was formed through the 1D CNTs inlaid among the 2D graphene platelets (GNPs). The mechanical properties of the CNTs/GNPs/Di scaffolds were significantly improved compared with the CNTs/Di scaffolds and GNPs/Di scaffolds. In addition, the scaffolds exhibited excellent apatite-forming ability, a modest degradation rate, and stable mechanical properties in simulated body fluid (SBF). Moreover, cell culturing tests indicated that the scaffolds supported the cells attachment and proliferation. Taken together, the CNTs/GNPs/Di scaffolds offered great potential for bone tissue engineering.

2022 ◽  
Vol 12 (2) ◽  
pp. 411-416
Author(s):  
Liang Tang ◽  
Si-Yu Zhao ◽  
Ya-Dong Yang ◽  
Geng Yang ◽  
Wen-Yuan Zhang ◽  
...  

To investigate the degradation, mechanical properties, and histocompatibility of weft-knitted silk mesh-like grafts, we carried out the In Vitro and In Vivo silk grafts degradation assay. The In Vitro degradation experiment was performed by immersing the silk grafts in simulated body fluid for 1 year, and the results showed that the degradation rate of the silk mesh-like grafts was very slow, and there were few changes in the mechanical properties and quality of the silk mesh-like graft. In Vivo degradation assay was taken by implantation of the silk mesh-like grafts into the subcutaneous muscles of rabbits. At 3, 6, and 12 months postoperation, the rate of mass loss was 19.36%, 31.84%, and 58.77%, respectively, and the maximum load was 63.85%, 34.63%, and 10.76%, respectively of that prior to degradation. The results showed that the degradation rate of the silk graft and the loss of mechanical properties In Vivo were faster than the results obtained in the In Vitro experiments. In addition, there were no significant differences in secretion of serum IL-6 and TNF-α between the experimental and normal rabbits (P >0.05), suggesting no obvious inflammatory reaction. The findings suggest that the weft-knitted silk mesh-like grafts have good mechanical properties, histocompatibility, and In Vivo degradation rate, and therefore represent a candidate material for artificial ligament


Author(s):  
Yi Zhang ◽  
Richard T. Tran ◽  
Dipendra Gyawali ◽  
Jian Yang

Finding an ideal biomaterial with the proper mechanical properties and biocompatibility has been of intense focus in the field of soft tissue engineering. This paper reports on the synthesis and characterization of a novel crosslinked urethane-doped polyester elastomer (CUPOMC), which was synthesized by reacting a previously developed photocrosslinkable poly (octamethylene maleate citrate) (POMC) prepolymers (pre-POMC) with 1,6-hexamethylene diisocyanate (HDI) followed by thermo- or photo-crosslinking polymerization. The mechanical properties of the CUPOMCs can be tuned by controlling the molar ratios of pre-POMC monomers, and the ratio between the prepolymer and HDI. CUPOMCs can be crosslinked into a 3D network through polycondensation or free radical polymerization reactions. The tensile strength and elongation at break of CUPOMC synthesized under the known conditions range from 0.73±0.12MPa to 10.91±0.64MPa and from 72.91±9.09% to 300.41±21.99% respectively. Preliminary biocompatibility tests demonstrated that CUPOMCs support cell adhesion and proliferation. Unlike the pre-polymers of other crosslinked elastomers, CUPOMC pre-polymers possess great processability demonstrated by scaffold fabrication via a thermally induced phase separation method. The dual crosslinking methods for CUPOMC pre-polymers should enhance the versatile processability of the CUPOMC used in various conditions. Development of CUPOMC should expand the choices of available biodegradable elastomers for various biomedical applications such as soft tissue engineering.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2459-2465 ◽  
Author(s):  
R. J. T. LIN ◽  
D. BHATTACHARYYA ◽  
S. FAKIROV

The concept of microfibrillar composite (MFC) has been used to create a new type of polymer composites, in which the reinforcing microfibrils are loaded with carbon nanotubes (CNT). Polyamide 66 (PA66) has been melt blended with polypropylene in a twin screw extruder with and without CNT, and thereafter cold drawn to create a fibrillar state as well as to align the CNT in the PA66 microfibrils. The drawn bristles were compression moulded at 180°C to prepare MFC plates. The scanning electron microscope (SEM) observations indicate near perfect distribution of CNT in the reinforcing PA66 microfibrils. Although the fibrillated PA66 is able to improve the tensile stiffness and strength as expected from the MFC structure, the incorporation of CNT does not exhibit any further enhancing effect. It rather adversely affects the mechanical properties due to poor interface adhesion between the matrix and the reinforcing microfibrils with the presence of CNT, as demonstrated by SEM. However, the resulting highly aligned CNT within the MFC are expected to affect the physical and functional properties of these composites.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1596 ◽  
Author(s):  
Artemiy Aborkin ◽  
Kirill Khorkov ◽  
Evgeny Prusov ◽  
Anatoly Ob’edkov ◽  
Kirill Kremlev ◽  
...  

Aluminum matrix composites reinforced with multiwalled carbon nanotubes (MWCNTs) are promising materials for applications in various high-tech industries. Control over the processes of interfacial interaction in Al/MWCNT composites is important to achieve a high level of mechanical properties. The present study describes the effects of coating MWCNTs with titanium carbide nanoparticles on the formation of mechanical properties and the evolution of the reinforcement structure in bulk aluminum matrix nanocomposites with low concentrations of MWCNTs under conditions of solid-phase consolidation of ball-milled powder mixtures. Using high-energy ball milling and uniaxial hot pressing, two types of bulk nanocomposites based on aluminum alloy AA5049 that were reinforced with microadditions of MWCNTs and MWCNTs coated with TiC nanoparticles were successfully produced. The microstructural and mechanical properties of the Al/MWCNT composites were investigated. The results showed that, on the one hand, the TiC nanoparticles on the surface of the MWCNT hybrid reinforcement reduced the damage of reinforcement under the intense exposure of milling bodies, and on the other hand, they reduced the contact area of the MWCNTs with the matrix material (acting as a barrier interface), which also locally inhibited the reaction between the matrix and the MWCNTs.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Carlos Medina ◽  
Eduardo Fernandez ◽  
Alexis Salas ◽  
Fernando Naya ◽  
Jon Molina-Aldereguía ◽  
...  

The mechanical properties of the matrix and the fiber/matrix interface have a relevant influence over the mechanical properties of a composite. In this work, a glass fiber-reinforced composite is manufactured using a carbon nanotubes (CNTs) doped epoxy matrix. The influence of the CNTs on the material mechanical behavior is evaluated on the resin, on the fiber/matrix interface, and on the composite. On resin, the incorporation of CNTs increased the hardness by 6% and decreased the fracture toughness by 17%. On the fiber/matrix interface, the interfacial shear strength (IFSS) increased by 22% for the nanoengineered composite (nFRC). The influence of the CNTs on the composite behavior was evaluated by through-thickness compression, short beam flexural, and intraply fracture tests. The compressive strength increased by 6% for the nFRC, attributed to the rise of the matrix hardness and the fiber/matrix IFSS. In contrast, the interlaminar shear strength (ILSS) obtained from the short beam tests was reduced by 8% for the nFRC; this is attributed to the detriment of the matrix fracture toughness. The intraply fracture test showed no significant influence of the CNTs on the fracture energy; however, the failure mode changed from brittle to ductile in the presence of the CNTs.


2017 ◽  
Vol 33 (2) ◽  
pp. 146-159 ◽  
Author(s):  
Mohammadreza Tahriri ◽  
Fathollah Moztarzadeh ◽  
Arash Tahriri ◽  
Hossein Eslami ◽  
Kimia Khoshroo ◽  
...  

The objective of this research was to study the degradation and biological characteristics of the three-dimensional porous composite scaffold made of poly(lactic- co-glycolic acid)/nano-fluorhydroxyapatite microsphere using sintering method for potential bone tissue engineering. Our previous experimental results demonstrated that poly(lactic- co-glycolic acid)/nano-fluorhydroxyapatite composite scaffold with a ratio of 4:1 sintered at 90ºC for 2 h has the greatest mechanical properties and a proper pore structure for bone repair applications. The weight loss percentage of both poly(lactic- co-glycolic acid)/nano-fluorhydroxyapatite and poly(lactic- co-glycolic acid) scaffolds demonstrated a monotonic trend with increasing degradation time, that is, the incorporation of nano-fluorhydroxyapatite into polymeric scaffold could lead to weight loss in comparison with that of pure poly(lactic- co-glycolic acid). The pH change for composite scaffolds showed that there was a slight decrease until 2 weeks after immersion in simulated body fluid, followed by a significant increase in the pH of simulated body fluid without a scaffold at the end of immersion time. The mechanical properties of composite scaffold were higher than that of poly(lactic- co-glycolic acid) scaffold at total time of incubation in simulated body fluid; however, it should be noted that the incorporation of nano-fluorhydroxyapatite into composite scaffold leads to decline in the relatively significant mechanical strength and modulus during hydrolytic degradation. In addition, MTT assay and alkaline phosphatase activity results defined that a general trend of increasing cell viability was seen for poly(lactic- co-glycolic acid)/nano-fluorhydroxyapatite scaffold sintered by time when compared to control group. Eventually, experimental results exhibited poly(lactic- co-glycolic acid)/nano-fluorhydroxyapatite microsphere-sintered scaffold is a promising scaffold for bone repair.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
R. Touri ◽  
F. Moztarzadeh ◽  
Z. Sadeghian ◽  
D. Bizari ◽  
M. Tahriri ◽  
...  

Bioglass has been used for bone-filling material in bone tissue engineering, but its lean mechanical strength limits its applications in load-bearing positions. Carbon nanotubes (CNTs), with their high aspect ratio and excellent mechanical properties, have the potential to strengthen and toughen bioactive glass material without offsetting its bioactivity. Therefore, in this research, multiwall carbon nanotube (MWCNT)/45S5 Bioglass composite scaffolds have been successfully prepared by means of freeze casting process. 45S5 Bioglass was synthesized by the sol-gel processing method. The obtained material was characterized with X-ray powder diffraction (XRD). The mechanical properties of the scaffolds, such as compression strength and elastic modulus, were measured. Finally, compared with the scaffolds prepared by 100% 45S5 Bioglass powders, the addition of 0.25 wt.% MWCNTs increases the compressive strength and elastic modulus of 45S5 Bioglass scaffolds from 2.08 to 4.56 MPa (a 119% increase) and 111.50 to 266.59 MPa (a 139% increase), respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Pin-Ning Wang ◽  
Tsung-Han Hsieh ◽  
Chin-Lung Chiang ◽  
Ming-Yuan Shen

Graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs) are novel nanofillers possessing attractive characteristics, including robust compatibility with most polymers, high absolute strength, and cost effectiveness. In this study, an outstanding synergetic effect on the grapheme nanoplatelets (GNPs) and multiwalled carbon nanotubes (CNTs) hybrids were used to reinforce epoxy composite and epoxy/carbon fiber composite laminates to enhance their mechanical properties. The mechanical properties of CNTs/GNPs hybrids on a fixed weight fraction (1 wt%) with mixing different ratio reinforced epoxy nanocomposite, such as ultimate tensile strength and flexure properties, were investigated. The mechanical properties of epoxy/carbon fiber composite laminates containing different proportions of CNTs/GNPs hybrids (0.5, 1.0, 1.5 wt%) were increased over that of neat laminates. Consequently, significant improvement in the mechanical properties was attained for these epoxy resin composites and carbon fiber-reinforced epoxy composite laminates.


Sign in / Sign up

Export Citation Format

Share Document