scholarly journals Adsorptive Removal of Benzene and Toluene from Aqueous Environments by Cupric Oxide Nanoparticles: Kinetics and Isotherm Studies

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Leili Mohammadi ◽  
Edris Bazrafshan ◽  
Meissam Noroozifar ◽  
Alireza Ansari-Moghaddam ◽  
Farahnaz Barahuie ◽  
...  

Removal of benzene and toluene, as the major pollutants of water resources, has attracted researchers’ attention, given the risk they pose to human health. In the present study, the potential of copper oxide nanoparticles (CuO-NPs) in eliminating benzene and toluene from a mixed aqueous solution was evaluated. For this, we performed batch experiments to investigate the effect of solution pH (3–13), dose of CuO-NPs (0.1–0.8 g), contact time (5–120 min), and concentration of benzene and toluene (10–200 mg/l) on sorption efficiency. The maximum removal was observed at neutral pH. By using the Langmuir model, we measured the highest adsorption capacity to be 100.24 mg/g for benzene and 111.31 mg/g for toluene. Under optimal conditions, adsorption efficiency was 98.7% and 92.5% for benzene and toluene, respectively. The sorption data by CuO-NPs well fitted into the following models: Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich model. The experimental information well fitted in the Freundlich for benzene and Langmuir for toluene. Based on the results, adsorption followed pseudo-second-order kinetics with acceptable coefficients. The findings introduced CuO-NPs as efficient compounds in pollutants adsorption. In fact, they could be used to develop a simple and efficient pollutant removal method from aqueous solutions.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alaa El Din Mahmoud ◽  
Khairia M. Al-Qahtani ◽  
Sahab O. Alflaij ◽  
Salma F. Al-Qahtani ◽  
Faten A. Alsamhan

AbstractEnvironmentally friendly copper oxide nanoparticles (CuO NPs) were prepared with a green synthesis route without using hazardous chemicals. Hence, the extracts of mint leaves and orange peels were utilized as reducing agents to synthesize CuO NPs-1 and CuO NPs-2, respectively. The synthesized CuO NPs nanoparticles were characterized using scanning electron microscopy (SEM), Energy Dispersive X-ray Analysis (EDX), BET surface area, Ultraviolet–Visible spectroscopy (UV–Vis), and Fourier Transform Infrared Spectroscopy (FT-IR). Various parameters of batch experiments were considered for the removal of Pb(II), Ni(II), and Cd(II) using the CuO NPs such as nanosorbent dose, contact time, pH, and initial metal concentration. The maximum uptake capacity (qm) of both CuO NPs-1 and CuO NPs-2 followed the order of Pb(II) > Ni(II) > Cd(II). The optimum qm of CuO NPs were 88.80, 54.90, and 15.60 mg g−1 for Pb(II), Ni(II), and Cd(II), respectively and occurred at sorbent dose of 0.33 g L−1 and pH of 6. Furthermore, isotherm and kinetic models were applied to fit the experimental data. Freundlich models (R2 > 0.97) and pseudo-second-order model (R2 > 0.96) were fitted well to the experimental data and the equilibrium of metal adsorption occurred within 60 min.


Author(s):  
Haider Qassim Raheem ◽  
Takwa S. Al-meamar ◽  
Anas M. Almamoori

Fifty specimens were collected from wound patients who visited Al-Hilla Teaching Hospital. The samples were grown on Blood and MacConkey agar for 24-48 hr at 37oC. The bacterial isolates which achieved as a pure and predominant growth from clinical samples as Pseudomonas fluorescens, were identified using morphological properties and Vitek2 system. The anti-bacterial activity of copper oxide nanoparticles (CuO NPs) against was tested by (disk diffusion assay) using dilutions of (400, 200, 100, 50, 25, and 12.5‎µ‎g/ml). The (MIC and MBC) of each isolate was determined. CuO NPs shows wide spectrum antibacterial activity against tested bacteria with rise zone of inhibition diameter that is proportionate with the increase in nanoparticle concentration. The MIC of CuO NPs extended from 100-200‎µ‎g/ml and the MBC ranged from 200-400‎µ‎g/ml. The antibiotic profile was determined by Viteck 2 compact system (Biomérieux). CuO NPs‎ found highly effective and safe in P. fluorescens wounds infections comparing with used antibiotics.


2018 ◽  
Vol 15 (2) ◽  
pp. 209-213 ◽  
Author(s):  
Sathish Mohan Botsa ◽  
Ramadevi Dharmasoth ◽  
Keloth Basavaiah

Background: During past two decades, functional nanomaterials have received great attention for many technological applications such as catalysis, energy, environment, medical and sensor due to their unique properties at nanoscale. However, copper oxide nanoparticles (NPs) such as CuO and Cu2O have most widely investigated for many potential applications due to their wide bandgap, high TC, high optical absorption and non-toxic in nature. The physical and chemical properties of CuO and Cu2O NPs are critically depending on their size, morphology and phase purity. Therefore, lots of efforts have been done to prepare phase CuO and Cu2O NPs with different morphology and size. Method: The synthesis of cupric oxide (CuO) and cuprous oxide (Cu2O) NPs using copper acetate as a precursor by varying the reducing agents such as hydrazine sulphate and hydrazine hydrate via sonochemical method. The phase, morphology and crystalline structure of a prepared CuO and Cu2O NPs were investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray (EDS) and UV-Visible Diffuse reflectance spectroscopy (DRS). Results: The phase of NPs was tuned as a function of reducing agents.XRD patterns confirmed the formation of pure phase crystalline CuO and Cu2O NPs. FTIR peak at 621 cm-1 confirmed Cu(I)-O vibrations, while CuO vibrations confirmed by the presence of two peaks at 536 and 586 cm-1. Further investigation was done by Raman, which clearly indicates the presence of peaks at 290, 336, 302 cm-1 and 173, 241 cm-1 for CuO and Cu2O NPs, respectively. The FESEM images revealed rod-like morphology of the CuO NPs while octahedral like shape for Cu2O NPs. The presence of elemental Cu and O in stoichiometric ratios in EDS spectra confirms the formation of both CuO and Cu2O NPs. In summary, CuO and Cu2O NPs were successfully synthesized by a sonochemical method using copper acetate as a precursor at different reducing agents. The bandgap of CuO and Cu2O NPs was 2.38 and 1.82, respectively. Furthermore, the phase purity critically depends on reducing agents.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 78
Author(s):  
Karla Araya-Castro ◽  
Tzu-Chiao Chao ◽  
Benjamín Durán-Vinet ◽  
Carla Cisternas ◽  
Gustavo Ciudad ◽  
...  

Amongst different living organisms studied as potential candidates for the green synthesis of copper nanoparticles, algal biomass is presented as a novel and easy-to-handle method. However, the role of specific biomolecules and their contribution as reductant and capping agents has not yet been described. This contribution reports a green synthesis method to obtain copper oxide nanoparticles (CuO-NPs) using separated protein fractions from an aqueous extract of brown algae Macrocystis pyrifera through size exclusion chromatography (HPLC-SEC). Proteins were detected by a UV/VIS diode array, time-based fraction collection was carried out, and each collected fraction was used to evaluate the synthesis of CuO-NPs. The characterization of CuO-NPs was evaluated by Dynamic Light Scattering (DLS), Z-potential, Fourier Transform Infrared (FTIR), Transmission Electron Microscope (TEM) equipped with Energy Dispersive X-ray Spectroscopy (EDS) detector. Low Molecular Weight (LMW) and High Molecular Weight (HMW) protein fractions were able to synthesize spherical CuO-NPs. TEM images showed that the metallic core present in the observed samples ranged from 2 to 50 nm in diameter, with spherical nanostructures present in all containing protein samples. FTIR measurements showed functional groups from proteins having a pivotal role in the reduction and stabilization of the nanoparticles. The highly negative zeta potential average values from obtained nanoparticles suggest high stability, expanding the range of possible applications. This facile and novel protein-assisted method for the green synthesis of CuO-NPs may also provide a suitable tool to synthesize other nanoparticles that have different application areas.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Khwaja Salahuddin Siddiqi ◽  
M. Rashid ◽  
A. Rahman ◽  
Tajuddin ◽  
Azamal Husen ◽  
...  

Abstract Background Biogenic fabrication of nanoparticles from naturally occurring biomaterials involves plants, herbs, bacteria and fungi using water as neutral solvent, while chemical synthesis involves hazardous chemicals and leaves unwanted byproduct which unnecessarily pollute the environment. In order to prevent atmospheric pollution a safe, clean and green strategy for the synthesis of cupric oxide nanoparticles from aqueous leaf extract of Diospyros montana has been employed. D. montana of Ebenaceae family is a poisonous tropical plant which grows wild in Asia. Its extract is commonly known as fish poison. The rate of formation of NPs from plant extract is thought to be facile and rapid relative to those formed by fungi and bacteria, but it depends on the concentration of reducing chemicals available in the extract. We report, in this communication, a benign method of biogenic synthesis of cupric oxide nanoparticles (CuO-NPs) from leaf extract of D. montana and their characterization by UV–visible, FTIR, SEM, TEM, DLS, SAED and EDX analyses. Their antimicrobial activity against seven Gram-positive and four Gram-negative bacteria has been screened. Photocatalytic degradation of methylene blue by ascorbic acid as reducing agent and cupric oxide nanoparticles as catalyst has been done under sunlight. Results Cupric oxide nanoparticles of varying size starting from 5.9 to 21.8 nm have been fabricated from aqueous leaf extract of D. montana at room temperature. The pure extract absorbs at 273 nm while CuO-NPs exhibit a broad peak at 320 nm. FTIR spectrum of the leaf extract shows the presence of a double quinonoid molecule. There are three types of CuO-NPs with different hydrodynamic radii. Their average hydrodynamic radii fall between 495 ± 346 nm. SEM and TEM images show spherical shaped CuO-NPs of different size. SAED suggests crystalline nature of CuO-NPs. They are highly polydispersed in solution. EDX analysis reveals the presence of Ca, C, O, Na and Si besides copper. Oxygen content is over 50% by mass. Reduction of methylene blue dye (MB) by ascorbic acid as reducing agent, in presence of CuO-NPs as catalyst, has been achieved in 90 s at room temperature while their reduction by ascorbic acid alone takes more than 10 min. Antibacterial activity of CuO-NPs against seven Gram-positive (Staphylococcus aureus, Streptococcus mutans, Streptococcus pyogenes, Streptococcus viridans, Staphylococcus epidermidis, Corynebacterium xerosis and Bacillus cereus) and four Gram-negative bacterial strains (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Proteus vulgaris) has been investigated. The results indicated that NPs are highly effective against growth inhibition of Gram-positive bacteria than Gram-negative bacteria. Copper oxide nanoparticles are even more toxic than the standard antibiotic, norfloxacin. Conclusion In this project cupric oxide NPs of 5.9–21.8 nm have been fabricated from aqueous leaf extract of D. montana. It is most inexpensive and easy process to fabricate NPs from plant material because no toxic chemicals are used. Since CuO-NPs are toxic to several Gram-positive and Gram-negative bacterial strains, attempt may be made to use them as antibacterial agent to protect food, vegetable and crops. Also, the reduction of methylene blue dye by ascorbic acid as reducing agent in presence of CuO NPs as catalyst has been done very efficiently at a rapid rate which prompts us to use them as catalyst in the reduction of dyes, other toxic materials and industrial effluents. Further investigation of other beneficial properties of CuO-NPs can also be explored.


2019 ◽  
Vol 131 ◽  
pp. 01129
Author(s):  
Xiaoying Zheng ◽  
Xiaoyao Shao ◽  
Yuan Zhang ◽  
Mengmeng Yang ◽  
Zhi Xu ◽  
...  

With the increasing use of cupric oxide nanoparticles (CuO NPs), its potential environmental toxicity has been concerned nowadays. Aerobic granular sludge (AGS) is a special collection of microorganisms. This research studied under long exposure to the concentration of 5, 10 and 20 mg/L of CuO NPs, pollutants removal efficiency of AGS, extracellular polymers (EPS) and microbial communities in aerobic/anaerobic/anoxic (A/O/A) sequencing batch reactors (SBRs). The results showed that COD removal rates was stable, and the removal efficiencies of TN decreased because of the high concentration CuO NPs. On the 45th day, the TP removal efficiency of the reactor with CuO NPs concentration of 10 mg/L and 20 mg/L decreased to 55.83% and 43.72%, respectively. The denitrifying phosphorus removal-aerobic granular sludge (DPR-AGS) had certain resistance to the short-term impact of CuO NPs, and the phosphorus removal ability decreased at the late stage of the impact test. Besides, CuO NPs decreased the stability of DPR-AGS. High-throughput sequencing showed that CuO NPs decreased microbial diversity of DPR-AGS.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Maqusood Ahamed ◽  
Hisham A. Alhadlaq ◽  
M. A. Majeed Khan ◽  
Ponmurugan Karuppiah ◽  
Naif A. Al-Dhabi

We studied the structural and antimicrobial properties of copper oxide nanoparticles (CuO NPs) synthesized by a very simple precipitation technique. Copper (II) acetate was used as a precursor and sodium hydroxide as a reducing agent. X-ray diffraction patter (XRD) pattern showed the crystalline nature of CuO NPs. Field emission scanning electron microscope (FESEM) and field emission transmission electron microscope (FETEM) demonstrated the morphology of CuO NPs. The average diameter of CuO NPs calculated by TEM and XRD was around 23 nm. Energy dispersive X-ray spectroscopy (EDS) spectrum and XRD pattern suggested that prepared CuO NPs were highly pure. CuO NPs showed excellent antimicrobial activity against various bacterial strains (Escherichia coli,Pseudomonas aeruginosa,Klebsiella pneumonia,Enterococcus faecalis,Shigella flexneri,Salmonella typhimurium,Proteus vulgaris,andStaphylococcus aureus). Moreover,E. coliandE. faecalisexhibited the highest sensitivity to CuO NPs whileK. pneumoniawas the least sensitive. Possible mechanisms of antimicrobial activity of CuO NPs should be further investigated.


Sign in / Sign up

Export Citation Format

Share Document