scholarly journals Mechanical and Thermal Properties of PLA Biocomposites Reinforced by Coir Fibers

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Zhihui Sun ◽  
Li Zhang ◽  
Duoping Liang ◽  
Wei Xiao ◽  
Jing Lin

In this work, polylactic acid (PLA) biocomposites reinforced with short coir fibers were fabricated using a corotating twin-screw extruder and injection molding machine. Short coir fibers were treated by mixed solution including hydrogen peroxide and sodium hydroxide to improve the adhesion between fibers and PLA matrix. The effects of treated coir fiber content (1, 3, 5, and 7 wt%) on tensile, impact, thermal properties, and surface morphology of PLA biocomposites were investigated. The best impact strength results were obtained for 3 wt% PLA/treated coir fiber biocomposites, where the impact strength was increased by approximately 28% compared to the neat PLA. The tensile modulus of PLA biocomposites was increased by increasing the treated coir fiber content. These results were confirmed by morphological structure analysis. Differential scanning calorimetry (DSC) results demonstrated a minor effect of the treated coir fiber on thermal behavior of PLA resin. Thermogravimetry analysis (TGA) demonstrated that the thermal stability of the PLA/treated coir fiber biocomposites was reduced by the incorporation of treated coir fiber.

2012 ◽  
Vol 535-537 ◽  
pp. 103-109 ◽  
Author(s):  
Xiang Min Xu ◽  
Li Ping Guo ◽  
Yu Dong Zhang ◽  
Zhi Jun Zhang

The polyoxymethylene-based composites containing reactable nano-SiO2were prepared in a twin-screw extruder by melt compounding, and mechanical and thermal properties of pure polyoxymethylene (POM) and composites were investigated. The results showed that reactable nano-SiO2could reinforce the tensile strength and Young’s modulus of composites. To the impact strength of composites, there was obvious improvement when a small amount of silica was added into POM. With the increase of silica content, the impact strength of composites showed a gradually decrease trend. It was worthy to note that reactable nano-SiO2could significantly increase the decomposition temperature of POM. When the content of reactaSubscript textble nano-SiO2was up to 5 wt%, the degradation temperature of composites could increase about 38.3°C under nSubscript textitrogen atmosphere and 43.8°C under air atmosphere, respectively, compared with pure POM. Furthermore, the differential scanning calorimetry (DSC) analysis showed that reactable nano-SiO2had a good heterogeneous nucleation capability in POM, and could increase crystallization temperature of POM, but surface structure of reactable nano-SiO2was not propitious to the growth of POM crystals, accordingly leading to the decreasing crystallinity of composites.


2013 ◽  
Vol 12 (06) ◽  
pp. 1350039
Author(s):  
L. G. FURLAN ◽  
RICARDO V. B. OLIVEIRA ◽  
ANDRÉIA C. E. MELLO ◽  
SUSANA A. LIBERMAN ◽  
MAURO A. S. OVIEDO ◽  
...  

The preparation of high-impact polypropylene nanocomposites with different organo-montmorillonite (O-MMT) contents by means of meltprocessing was investigated. The nanocomposite properties were evaluated by transmission electron microscopy (TEM), flexural modulus, izod impact strength, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was noticed that the PP/O-MMT nanocomposites properties were affected by clay content. Exceptional improvements in impact strength were obtained (maximum of 185%) by the use of low O-MMT content. The results showed that higher enhancement on mechanical/thermal properties was obtained by 3 wt.% of O-MMT instead of higher quantities.


2018 ◽  
Vol 22 ◽  
pp. 23-33 ◽  
Author(s):  
Seenaa I. Hussein

In this research, we have prepared epoxy/graphene nanocomposites (graphene content: 1, 3, 5, 7, and 9 wt%) to investigate some mechanical (impact strength, hardness, and Brazilian tests) and thermal properties (thermal conductivity and thermogravimetric analysis). Our results show that the impact strength, hardness, and compression strength values increased to 5.04 kJ/m2, 79.8, and 27.85 MPa, respectively, as increasing graphene content up to 5 wt% and then decreased for further increasing of the graphene content. The observed reduction in the hardness could be attributed to the samples brittleness. On the other hand, the thermal conductivity increased with increasing the graphene content because of the high thermal conductivity of graphene and thus the efficiency increase with increasing of graphene content. In addition, the thermal stability of epoxy/graphene composite increase compared with pure epoxy resin, while the activation energy for samples consists of 9 wt% graphene greater than those containing 1 wt% graphene.


2013 ◽  
Vol 812 ◽  
pp. 163-168 ◽  
Author(s):  
Mohd Redzuan Aein Afina ◽  
Bonnia Noor Najmi ◽  
Shuhaimen Siti Shakirah ◽  
Siti Norasmah Surip

The influences of Carbon Black (CB) as filler for rubber toughened polyester composite on thermal properties were investigated, in consideration for applications such as automotive parts and integrated circuits (IC) encapsulations. The usage of CB as filler is one of the efforts in increasing and varying the use of rubber and unsaturated polyester thermoset in composite materials. Unsaturated polyester was mixed with 3% liquid natural rubber (LNR) as toughening agent and CB, which were varied from 0, 2, 4, 6, 8, and 10% using mechanical stirrer and moulded by using the open mould technique. Impact testing was conducted for mechanical property and it was found that the addition of CB increased the impact strength by 87%. Thermal properties of the composites were evaluated using a thermogravimetric analyzer (TGA) and differential scanning calorimetry (DSC). The TGA curves of the composites were quite similar, but there were slight increment in thermal stability for several CB filled composites compared to the neat polyester matrix. DSC analysis showed that all the composites were fully cured, and CB filled composites had a slower heat flow rate compared to the neat rubber toughened composite.


e-Polymers ◽  
2018 ◽  
Vol 18 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Cong Meng ◽  
Jin-ping Qu

AbstractThe poly(butylene terephthalate) (PBT)/ethylene-vinyl acetate copolymer (EVA) blends with different contents of EVA were prepared by an vane extruder. From the observation of morphologies, impact strength and dynamic mechanical analysis (DMA), the EVA particles were well dispersed in the PBT matrix and improved the impact strength of PBT. Differential scanning calorimetry measurements demonstrate that there is little diversification in the crystal structure and type. Thermogravimetric analysis reveals that as the weight fraction of EVA increases, the thermal stability of composite is enhanced. The rheological analyses indicate that the PBT/EVA blends follow a non-Newtonian behavior and viscosities of the blends are drastically lower than that of pure PBT at higher frequencies. The storage modulus (G′) and loss modulus (G″) of the blends monotonously increase as the frequency rises. This work provides a novel method to develop blends with excellent performance.


2012 ◽  
Vol 472-475 ◽  
pp. 1937-1940
Author(s):  
Dong Yan Ren ◽  
Xiao Hong Li ◽  
Zhi Hua Li

Polyurethane-modified epoxy resin was prepared with Polyurethane prepolymer(PUP). The effects of the PUP content and epoxy resin type on mechanical and thermal properties of materials were discussed. The results indicate that the tensile strength and impact strength of the material increase to maximum successively, and then decrease with the increasing addition of PUP. When the mass fraction of PUP was 15%, the tensile strength and the impact strength of materials were all the best. There were significant differences in mechanical and thermal properties of material for different epoxy, and the best results were cured epoxy TDE-85.


2010 ◽  
Vol 150-151 ◽  
pp. 406-409
Author(s):  
Wen Lei ◽  
Xiao Yan Ding ◽  
Chi Xu

Polypropylene and wood flour were used as raw materials,maleic anhydride grafted polypropylene(MAPP) as compatibilizing agent, wood-plastic composite(WPC) was prepared by compression molding process. The effects of the content of MAPP on the mechanical and thermal properties of WPC were investigated. The results show that, with the increase of the content of MAPP, both the tensile and flexural strengths of WPC will increase, and the impact strength of WPC increases first, then decreases, and the impact strength reaches the maximum of 1.18kJ/m2 when the content of MAPP is 4%,which is 76.7% increased from that of the composite without MAPP. Each composite has an obvious heat-absorption peak when melted during 140-170 and the melting enthalpy of WPC increases with the content of MAPP, the melting procedures of all the composites are quite similar with one another. Application of MAPP can improve the thermal stability of WPC


2015 ◽  
Vol 659 ◽  
pp. 446-452 ◽  
Author(s):  
Supatra Pratumshat ◽  
Phutthachat Soison ◽  
Sukunya Ross

In this work, the mechanical and thermal properties of pineapple leaf fiber (PALF)/poly (lactic acid) (PLA) composites were studied. Pineapple leaf fibers were pretreated with 4 %wt sodium hydroxide solution followed by various silane solutions i.e. γ-(aminopropyl) trimethoxy silane (APS), γ-methacrylate propyl trimethoxy (A174) and bis [3-(triethoxysilyl) propyl] tetrasulfide (Si69). FTIR results show a significant functional groups of C=O and C=C of methacrylic group, NH2group and Si-O which are the characteristic of these silane coupling agents. SEM micrographs of pretreated PALF showed a rough surface while untreated and silane treated PALF revealed less roughness. It was found that the tensile strength at break of PLA is 56 MPa and tensile strength of composites decreased when fiber content increased. The tensile modulus of silane treated PALF composites were higher than PLA, whereas their impact strength were similar to PLA. Si69 treated PALF showed lower impact strength compared to the others silanes treated fiber which indicates more phase separation between fiber and matrix. This is related to high percentage of crystallinity of composite from Si69 treated fiber. It was also found that the addition of PALF did not change the glass transition temperature and melting temperature of PLA while the percentage of crystallinity increases as the fiber content increased. In addition WAXS study of composite from Si69 treated fiber reveals sharp crystalline peaks of PLA while the others silane treatments show amorphous characteristic of PLA.


2009 ◽  
Vol 79-82 ◽  
pp. 2027-2030 ◽  
Author(s):  
Poonsub Threepopnatkul ◽  
Chanin Kulsetthanchalee ◽  
K. Bunmee ◽  
N. Kliaklom ◽  
W. Roddouyboon

This research was to study the related mechanical and thermal properties of recycled polypropylene from post consumer containers reinforced with coir fiber. Surface of coir fiber was treated with sodium hydroxide to remove lignin and hemicelluloses and likely to improve the interfacial adhesion in the composites. The composites of treated coir fiber and recycled polypropylene were prepared by varying the coir fiber contents at 5%, 10% and 20% by weight using a twin screw extruder. The thermal properties were investigated by thermal gravimetric analysis (TGA) and differential scanning calorimeter (DSC). The results from TGA showed that thermal stability of the composites was lower than that of recycled polypropylene resin and thermal stability decreased with increasing coir fiber content. From DSC results, it indicated that the crystallinity of treated coir fiber composites increased as a function of fiber content. The mechanical properties of injection-molded samples were studied by universal testing machine. The treated coir fiber composites produced enhanced mechanical properties. The tensile strength, tensile modulus and impact strength of modified coir fiber/recycled polypropylene composites increased as a function of coir fiber content.


2013 ◽  
Vol 1499 ◽  
Author(s):  
Eda Acik ◽  
Ulku Yilmazer

ABSTRACTTernary nanocomposites of poly (lactic acid) (PLA) were produced by melt blending with two types of elastomers and five types of organoclays to obtain improved mechanical properties such as tensile strength, modulus and impact strength. One of the elastomers is a random copolymer of ethylene and glycidyl methacrylate (E-GMA) and the other one is a random terpolymer of ethylene-butyl acrylate-maleic anhydride (E-BA-MAH). Organically modified montmorillonites (OMMT) were utilized as nanofillers. XRD, DSC, tensile and impact tests were done on the injection molded samples. FTIR, SEM and TEM analyses are still in progress. As preliminary results, thermal analysis showed that the addition of compatibilizers and organoclays does not have a distinct effect on the thermal properties of the composites, and no evidence of nucleation activity of compatibilizers or organoclays was found. For all types of organoclays, the nanocomposites produced with E-GMA exhibited better mechanical properties in comparison to nanocomposites containing E-BA-MAH, especially for the impact strength.


Sign in / Sign up

Export Citation Format

Share Document