HIGH-IMPACT PP NANOCOMPOSITES: INFLUENCE OF CLAY CONTENT ON MECHANICAL AND THERMAL PROPERTIES

2013 ◽  
Vol 12 (06) ◽  
pp. 1350039
Author(s):  
L. G. FURLAN ◽  
RICARDO V. B. OLIVEIRA ◽  
ANDRÉIA C. E. MELLO ◽  
SUSANA A. LIBERMAN ◽  
MAURO A. S. OVIEDO ◽  
...  

The preparation of high-impact polypropylene nanocomposites with different organo-montmorillonite (O-MMT) contents by means of meltprocessing was investigated. The nanocomposite properties were evaluated by transmission electron microscopy (TEM), flexural modulus, izod impact strength, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was noticed that the PP/O-MMT nanocomposites properties were affected by clay content. Exceptional improvements in impact strength were obtained (maximum of 185%) by the use of low O-MMT content. The results showed that higher enhancement on mechanical/thermal properties was obtained by 3 wt.% of O-MMT instead of higher quantities.

2018 ◽  
Vol 33 (4) ◽  
pp. 435-450 ◽  
Author(s):  
Patrycja Bazan ◽  
Stanisław Kuciel ◽  
Mariola Sądej

The work has evaluated the possibility of the potential reinforcing of poly(oxymethylene) (POM) by basalt fibers (BFs) and influence of BFs addition on thermal properties. Two types of composites were produced by injection molding. There were 20 and 40 wt% long BFs content with an average length of 1 mm. The samples were made without using a compatibilizer. In the experimental part, the basic mechanical properties (tensile strength, modulus of elasticity, strain at break, flexural modulus, flexural strength, and deflection at 3.5% strain) of composites based on POM were determined. Tensile properties were also evaluated at three temperatures −20°C, 20°C, and 80°C. The density and Charpy impact of the produced composites were also examined. The influence of water absorption on mechanical properties was investigated. Thermal properties were conducted by the differential scanning calorimetry, thermal gravimetric analysis, and fourier transform infrared (FTIR)-attenuation total reflection (ATR) spectroscopy analysis. In order to make reference to the effects of reinforcement and determine the structure characteristics, scanning electron microscopy images were taken. The addition of 20 and 40 wt% by weight of fibers increases the strength and the stiffness of such composites by more than 30–70% in the range scale of temperature. Manufactured composites show higher thermal and dimensional stability in relation to neat POM.


2021 ◽  
Vol 9 ◽  
Author(s):  
Linda Salminen ◽  
Erno Karjalainen ◽  
Vladimir Aseyev ◽  
Heikki Tenhu

This article introduces butyl acrylate-based materials that are toughened with dynamic crosslinkers. These dynamic crosslinkers are salts where both the anion and cation polymerize. The ion pairs between the polymerized anions and cations form dynamic crosslinks that break and reform under deformation. Chemical crosslinker was used to bring shape stability. The extent of dynamic and chemical crosslinking was related to the mechanical and thermal properties of the materials. Furthermore, the dependence of the material properties on different dynamic crosslinkers—tributyl-(4-vinylbenzyl)ammonium sulfopropyl acrylate (C4ASA) and trihexyl-(4-vinylbenzyl)ammonium sulfopropyl acrylate (C6ASA)—was studied. The materials’ mechanical and thermal properties were characterized by means of tensile tests, dynamic mechanical analysis, differential scanning calorimetry, and thermogravimetric analysis. The dynamic crosslinks strengthened the materials considerably. Chemical crosslinks decreased the elasticity of the materials but did not significantly affect their strength. Comparison of the two ionic crosslinkers revealed that changing the crosslinker from C4ASA to C6ASA results in more elastic, but slightly weaker materials. In conclusion, dynamic crosslinks provide substantial enhancement of mechanical properties of the materials. This is a unique approach that is utilizable for a wide variety of polymer materials.


e-Polymers ◽  
2018 ◽  
Vol 18 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Cong Meng ◽  
Jin-ping Qu

AbstractThe poly(butylene terephthalate) (PBT)/ethylene-vinyl acetate copolymer (EVA) blends with different contents of EVA were prepared by an vane extruder. From the observation of morphologies, impact strength and dynamic mechanical analysis (DMA), the EVA particles were well dispersed in the PBT matrix and improved the impact strength of PBT. Differential scanning calorimetry measurements demonstrate that there is little diversification in the crystal structure and type. Thermogravimetric analysis reveals that as the weight fraction of EVA increases, the thermal stability of composite is enhanced. The rheological analyses indicate that the PBT/EVA blends follow a non-Newtonian behavior and viscosities of the blends are drastically lower than that of pure PBT at higher frequencies. The storage modulus (G′) and loss modulus (G″) of the blends monotonously increase as the frequency rises. This work provides a novel method to develop blends with excellent performance.


2012 ◽  
Vol 535-537 ◽  
pp. 103-109 ◽  
Author(s):  
Xiang Min Xu ◽  
Li Ping Guo ◽  
Yu Dong Zhang ◽  
Zhi Jun Zhang

The polyoxymethylene-based composites containing reactable nano-SiO2were prepared in a twin-screw extruder by melt compounding, and mechanical and thermal properties of pure polyoxymethylene (POM) and composites were investigated. The results showed that reactable nano-SiO2could reinforce the tensile strength and Young’s modulus of composites. To the impact strength of composites, there was obvious improvement when a small amount of silica was added into POM. With the increase of silica content, the impact strength of composites showed a gradually decrease trend. It was worthy to note that reactable nano-SiO2could significantly increase the decomposition temperature of POM. When the content of reactaSubscript textble nano-SiO2was up to 5 wt%, the degradation temperature of composites could increase about 38.3°C under nSubscript textitrogen atmosphere and 43.8°C under air atmosphere, respectively, compared with pure POM. Furthermore, the differential scanning calorimetry (DSC) analysis showed that reactable nano-SiO2had a good heterogeneous nucleation capability in POM, and could increase crystallization temperature of POM, but surface structure of reactable nano-SiO2was not propitious to the growth of POM crystals, accordingly leading to the decreasing crystallinity of composites.


2020 ◽  
Author(s):  
◽  
R. M. S. Teotonio

Polyamide 12 (PA12) was modified by incorporating calcium carbonate nanoparticles (NPCC) to analyze the effect of the filler content on the mechanical and thermal properties of the final nanocomposites. Compositions containing 0.1, 0.2, 0.5, 1, 5 and 10 wt% of Socal 312 and 10 wt% of Socal U1S2 were analyzed. Furthermore, extruded and non-extruded PA12 were compared. NPCC was characterized through BET analysis (Brunauer, Emmett and Teller), which confirmed that Socal 312 had a specific surface area superior to Socal U1S2. Scanning electron microscopy revealed a tendency of the particles to agglomerate at 1 wt% NPCC and higher. However, all samples showed good distribution of the filler throughout the matrix. Differential Scanning Calorimetry (DSC) analyses did not show differences in the melting temperature of the compositions. Crystallization temperature tends to increase as the amount of filler in the matrix increases. Crystallinity degree showed differences only when comparing extruded and non-extruded PA12, the same occurs with Socal 312 in relation to Socal U1S2 containing 10 wt% of filler. Thermogravimetric analysis (TGA) showed that for contents from 0.5 wt% NPCC, increasing NPCC content reduces the thermal stability of the material. Muffle calcination tests confirmed the residues content obtained with TGA at 5 wt% NPCC higher, and evidenced good distribution of the filler along the specimen. Tensile and flexural strength and tensile and flexural modulus started increasing at 1 wt% NPCC and HDT started increasing at 0.2 wt% NPCC, showing the reinforcing effect of nanofiller and the increase in stiffness of the materials. Impact strength at 23 °C decreased at 0.5 wt% NPCC. Impact strength at -40 °C reduced only with addition of 10 wt% NPCC. Strain at break, toughness and impact strength at 23 °C showed reduction in extruded PA12 when compared to non-extruded PA12, possibly because extrusion favors the increase in crystallinity, as verified in the DSC analysis. Socal U1S2 also showed differences in relation to Socal 312 in strain at break, flexural modulus and HDT, probably due to its lower specific surface area in relation to Socal 312. Therefore, the incorporation of 1 wt% NPCC in PA12, already allows to obtain a nanocomposite with greater mechanical strength compared to neat PA12, which can be a feasible alternative for applications where an increase in mechanical properties is desired


2017 ◽  
Vol 51 (30) ◽  
pp. 4147-4155
Author(s):  
Nadir Ayrilmis ◽  
Türker Güleç ◽  
Emrah Peşman ◽  
Alperen Kaymakci

The effect of cotton dust as filler on the mechanical and thermal properties of polypropylene composites was investigated and the results were compared with the properties of wood plastic composites. Cotton dust was obtained from the dust filtration system located in a textile manufacturing unit. Different mixtures of cotton dust (30 to 60 wt%) or wood flour (30 to 60 wt%) were compounded with polypropylene with a coupling agent (maleic anhydride grafted polypropylene 3 wt%) in a twin-screw co-rotating extruder. The test specimens were produced by injection molding machine. The tensile strength and flexural modulus of the specimens improved with the increase in the filler content. There was no significant difference in the strength and modulus values between the cotton dust and wood flour filled composites. The highest thermal stability was found to be in the composites produced with 40 wt% of cotton dust according to the results of differential scanning calorimetry analysis. Based on the findings obtained from the present study, the optimum mechanical and thermal properties for the filled polypropylene composites were found to be a 50/50/3 formulation of cotton dust, polypropylene, and maleic anhydride grafted polypropylene, respectively.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Manwar Hussain ◽  
Young Hui Ko ◽  
Yong Ho Choa

Thermoplastic elastomer composites and nanocomposites were fabricated via melt processing technique by blending thermoplastic elastomer (TPEE) with poly(butylene terephthalate) (PBT) thermoplastic and also by adding small amount of organo modified nanoclay and/or polytetrafluoroethylene (PTFE). We study the effect of polymer blending on the mechanical and thermal properties of TPEE blends with and without nanoparticle additions. Significant improvement was observed by blending only TPEE and virgin PBT polymers. With a small amount (0.5 wt.%) of nanoclay or PTFE particles added to the TPEE composite, there was further improvement in both the mechanical and thermal properties. To study mechanical properties, flexural strength (FS), flexural modulus (FM), tensile strength (TS), and tensile elongation (TE) were all investigated. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to analyze the thermal properties, including the heat distortion temperature (HDT), of the composites. Scanning electron microscopy (SEM) was used to observe the polymer fracture surface morphology. The dispersion of the clay and PTFE nanoparticles was confirmed by transmission electron microscopy (TEM) analysis. This material is proposed for use as a baffle plate in the automotive industry, where both high HDT and high modulus are essential.


2010 ◽  
Vol 93-94 ◽  
pp. 210-213
Author(s):  
Bongkot Hararak ◽  
Natcha Prakymoramas ◽  
Wuttipong Rungseesantivanon ◽  
Dumrong Thamumjitr

In this study Polyurethane (PU)/glass fiber (GF) foam composites have been produced. The PU matrix consisted of Polyol and Diphenylmethane Diisocyanate (MDI). A long glass fiber (GF) at different aspect ratio (L/D ratio) was used to study the effect of reinforcement content on their properties such as; mechanical properties (flexural modulus, stress and strain at break, hardness, impact strength) and thermal properties (heat distortion temperature, HDT). It is found that the mechanical properties such as the flexural properties (strength, strain, and modulus) and impact strength increase as increasing GF aspect ratio and optimum at aspect ratio = 7.05. However, GF aspect ratio has a slight effect on the composites hardness due to GF contents and PU densities of PU/GF foam composites are not different, significantly. And the heat distortion temperature slightly increases as GF aspect ratio.


Author(s):  
Farzana Hussain ◽  
Derrick Dean ◽  
Anwarul Haque

The field of polymer-clay nanocomposites has attracted considerable attention as a method of enhancing polymer properties and extending their utility. Layered silicates dispersed as a reinforcing phase in a polymer matrix are one of the most important forms of such inorganic-organic nanocomposites, making them the subject of intense research. We have recently prepared several thermoset-based nanocomposites with improved thermal and mechanical properties. This paper is primarily focused in studying the effects of nano clay particles such as montmorillonite on improving mechanical and thermal properties of the polymer matrix composite. Epoxy and vinyl ester nanocomposites were prepared by adding different weight percentages (0.5%, 1%, 2%, 5% and 10%) of montmorillonite nano clay particles to epoxy and vinyl ester matrices. The results show significant improvements in mechanical and thermal properties of the nanostructured materials with low loading of organo silicates. Thermal property measurement includes dynamic mechanical analysis (DMA). Mechanical properties such as flexural strength and flexural modulus of polymer matrix were improved in nano structured materials owing to their unique phase morphology and improved interfacial interactions. Molecular dispersion of the layered silicate within the cross-linked matrix was verified using Wide Angle X-Ray Diffraction (WAXD) and Transmission Electron Microscopy (TEM) revealing the intercalated nanocomposites were formed.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Zhihui Sun ◽  
Li Zhang ◽  
Duoping Liang ◽  
Wei Xiao ◽  
Jing Lin

In this work, polylactic acid (PLA) biocomposites reinforced with short coir fibers were fabricated using a corotating twin-screw extruder and injection molding machine. Short coir fibers were treated by mixed solution including hydrogen peroxide and sodium hydroxide to improve the adhesion between fibers and PLA matrix. The effects of treated coir fiber content (1, 3, 5, and 7 wt%) on tensile, impact, thermal properties, and surface morphology of PLA biocomposites were investigated. The best impact strength results were obtained for 3 wt% PLA/treated coir fiber biocomposites, where the impact strength was increased by approximately 28% compared to the neat PLA. The tensile modulus of PLA biocomposites was increased by increasing the treated coir fiber content. These results were confirmed by morphological structure analysis. Differential scanning calorimetry (DSC) results demonstrated a minor effect of the treated coir fiber on thermal behavior of PLA resin. Thermogravimetry analysis (TGA) demonstrated that the thermal stability of the PLA/treated coir fiber biocomposites was reduced by the incorporation of treated coir fiber.


Sign in / Sign up

Export Citation Format

Share Document