scholarly journals Comprehensive Optimization of Energy Consumption and Delay Performance for Green Communication in Internet of Things

2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Jiaze Wang ◽  
Chunhua Hu ◽  
Anfeng Liu

Energy efficiency as well as fast data transmission is vital to green communications-based applications for Internet of Things (IoT). Wireless sensors, which constitute one of the important parts of IoT, adopt duty cycle operating mode to save energy. Although duty cycle operating mode will decrease the energy consumption of sensor nodes, it leads to a larger communication delay. In this paper, a utility-based adaptive duty cycle (UADC) routing algorithm is proposed to increase energy efficiency, reduce transmission delay, and keep long lifetime at the same time. First, UADC routing algorithm adopts a comprehensive performance evaluation function to evaluate the utility of choosing different relay nodes. Then it selects the node which maximizes the utility of the system to perform data relay. The utility function synthesizes comprehensive indexes like the reliability, energy consumption, and delay of the node. UADC routing algorithm adopts a high-duty cycle operating mode in the areas which have more remaining energy to decrease the delay. And a low-duty cycle operating mode in the energy-strained areas is adopted to ensure a long lifetime. The simulation results also prove the significant performances of our proposed algorithms.

2019 ◽  
Vol 14 (4) ◽  
pp. 503-517 ◽  
Author(s):  
Wei Hu ◽  
Huanhao Li ◽  
Wenhui Yao ◽  
Yawei Hu

This paper attempts to solve the problems of uneven energy consumption and premature death of nodes in the traditional routing algorithm of rechargeable wireless sensor network in the ubiquitous power Internet of things. Under the application environment of the UPIoT, a multipath routing algorithm and an opportunistic routing algorithm were put forward to optimize the network energy and ensure the success of information transmission. Inspired by the electromagnetic propagation theory, the author constructed a charging model for a single node in the wireless sensor network (WSN). On this basis, the network energy optimization problem was transformed into the network lifecycle problem, considering the energy consumption of wireless sensor nodes. Meanwhile, the traffic of each link was computed through linear programming to guide the distribution of data traffic in the network. Finally, an energy optimization algorithm was proposed based on opportunistic routing, in a more realistic low power mode. The experimental results show that the two proposed algorithms achieved better energy efficiency, network lifecycle and network reliability than the shortest path routing (SPR) and the expected duty-cycled wakeups minimal routing (EDC). The research findings provide a reference for the data transmission of UPIoT nodes.


2020 ◽  
Vol 14 ◽  
Author(s):  
M. Sivaram ◽  
V. Porkodi ◽  
Amin Salih Mohammed ◽  
S. Anbu Karuppusamy

Background: With the advent of IoT, the deployment of batteries with a limited lifetime in remote areas is a major concern. In certain conditions, the network lifetime gets restricted due to limited battery constraints. Subsequently, the collaborative approaches for key facilities help to reduce the constraint demands of the current security protocols. Aim: This work covers and combines a wide range of concepts linked by IoT based on security and energy efficiency. Specifically, this study examines the WSN energy efficiency problem in IoT and security for the management of threats in IoT through collaborative approaches and finally outlines the future. The concept of energy-efficient key protocols which clearly cover heterogeneous IoT communications among peers with different resources has been developed. Because of the low capacity of sensor nodes, energy efficiency in WSNs has been an important concern. Methods: Hence, in this paper, we present an algorithm for Artificial Bee Colony (ABC) which reviews security and energy consumption to discuss their constraints in the IoT scenarios. Results: The results of a detailed experimental assessment are analyzed in terms of communication cost, energy consumption and security, which prove the relevance of a proposed ABC approach and a key establishment. Conclusion: The validation of DTLS-ABC consists of designing an inter-node cooperation trust model for the creation of a trusted community of elements that are mutually supportive. Initial attempts to design the key methods for management are appropriate individual IoT devices. This gives the system designers, an option that considers the question of scalability.


Author(s):  
Mohit Kumar ◽  
Sonu Mittal ◽  
Md. Amir Khusru Akhtar

Background: This paper presents a novel Energy Efficient Clustering and Routing Algorithm (EECRA) for WSN. It is a clustering-based algorithm that minimizes energy dissipation in wireless sensor networks. The proposed algorithm takes into consideration energy conservation of the nodes through its inherent architecture and load balancing technique. In the proposed algorithm the role of inter-cluster transmission is not performed by gateways instead a chosen member node of respective cluster is responsible for data forwarding to another cluster or directly to the sink. Our algorithm eases out the load of the gateways by distributing the transmission load among chosen sensor node which acts as a relay node for inter-cluster communication for that round. Grievous simulations show that EECRA is better than PBCA and other algorithms in terms of energy consumption per round and network lifetime. Objective: The objective of this research lies in its inherent architecture and load balancing technique. The sole purpose of this clustering-based algorithm is that it minimizes energy dissipation in wireless sensor networks. Method: This algorithm is tested with 100 sensor nodes and 10 gateways deployed in the target area of 300m × 300m. The round assumed in this simulation is same as in LEACH. The performance metrics used for comparisons are (a) network lifetime of gateways and (b) energy consumption per round by gateways. Our algorithm gives superior result compared to LBC, EELBCA and PBCA. Fig 6 and Fig 7 shows the comparison between the algorithms. Results: The simulation was performed on MATLAB version R2012b. The performance of EECRA is compared with some existing algorithms like PBCA, EELBCA and LBCA. The comparative analysis shows that the proposed algorithm outperforms the other existing algorithms in terms of network lifetime and energy consumption. Conclusion: The novelty of this algorithm lies in the fact that the gateways are not responsible for inter-cluster forwarding, instead some sensor nodes are chosen in every cluster based on some cost function and they act as a relay node for data forwarding. Note the algorithm does not address the hot-spot problem. Our next endeavor will be to design an algorithm with consideration of hot-spot problem.


2021 ◽  
Author(s):  
Isiaka Ajewale Alimi ◽  
Romilkumar K. Patel ◽  
Akeem O. Mufutau ◽  
Nelson J. Muga ◽  
Armando N. Pinto ◽  
...  

Abstract The evolution in the Information and Communications Technologies industry results in excessive energy consumption and carbon dioxide emission in the wireless networks. In this context, energy efficiency in mobile networks has been attracting considerable attention as green communications and operational expenditures reduction depend on it. Although the Internet of Things is to be supported by devices that are low-energy consuming, the power consumption of the huge number to be connected for several applications and services demand significant attention. To offer insights into green communications, this paper reviews various energy efficiency improvement techniques. Also, we consider a hybrid model in which the main grid power and dynamically harvested green energy from renewable energy sources can be leveraged to support the energy demand of the radio access network. In this regard, we reformulate the energy consumption model and consider an energy-efficient power allocation algorithm for green energy optimization. Numerical results show that with resource allocation algorithm exploitation, the energy efficiency can be enhanced. Besides, the amount of the grid energy consumption can be considerably minimized, resulting in the greenhouse gas emissions reduction in the wireless networks.


2017 ◽  
Vol 4 (3) ◽  
pp. 1-16 ◽  
Author(s):  
Amol V. Dhumane ◽  
Rajesh S. Prasad ◽  
Jayashree R. Prasad

In Internet of things and its relevant technologies the routing of data plays one of the major roles. In this paper, a routing algorithm is presented for the networks consisting of smart objects, so that the Internet of Things and its enabling technologies can provide high reliability while the transmitting the data. The proposed technique executes in two stages. In first stage, the sensor nodes are clustered and an optimal cluster head is selected by using k-means clustering algorithm. The clustering is performed based on energy of sensor nodes. Then the energy cost of the cluster head and the trust level of the sensor nodes are determined. At second stage, an optimal path will be selected by using the Genetic Algorithm (GA). The genetic algorithm is based on the energy cost at cluster head, trust level at sensor nodes and path length. The resultant optimal path provides high reliability, better speed and more lifetimes.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2126 ◽  
Author(s):  
Lijun Wang ◽  
Jia Yan ◽  
Tao Han ◽  
Dexiang Deng

Based on the connectivity and energy consumption problems in wireless sensor networks, this paper proposes a kind of new network algorithm called the connectivity and energy efficiency (CEE) algorithm to guarantee the connectivity and connectivity probability, and also to reduce the network energy consumption as much as possible. Under the premise that all sensors can communicate with each other in a specific communication radius, we obtained the relationship among the connectivity, the number of sensor nodes, and the communication radius because of the theory of probability and statistics. The innovation of the paper is to maximize the network connectivity and connectivity probability, by choosing which types of sleeping nodes to wake up. According to the node’s residual energy and the relative value of distance, the algorithm reduces the energy consumption of the whole network as much as possible, and wakes up the number of neighbor nodes as little as possible, to improve the service life of the whole network. Simulation results show that this algorithm combines the connectivity and the energy efficiency, provides a useful reference value for the normal operation of the sensors networks.


Author(s):  
Rajiv R Bhandari ◽  
K Rajasekhar

<p>In recent the espousal of Wireless Sensor Networks has been broadly augmented in numerous divisions. Battery operated Sensor nodes in the wireless network accomplish main task of capturing and responding to the surroundings. The lifetime of the network depends on the energy consumption of the sensor nodes. This paper contributes the survey on how the energy consumption should be managed for maximizing the life time of network and how to improve the efficiency of Network by using Cross layer architecture. The traditional MAC Layer, Network Layer &amp; Transport for WLAN having their own downsides just by modifying those we can achieve the network life time maximization goal. This paper represents analytical study for Energy efficiency by modifying Scheduling algorithm, by modifying traditional AODV routing algorithm for efficient packet transmission and by effectively using TCP for End to End Delivery of Data.</p>


2019 ◽  
Vol 9 (24) ◽  
pp. 5295 ◽  
Author(s):  
Victor Goman ◽  
Safarbek Oshurbekov ◽  
Vadim Kazakbaev ◽  
Vladimir Prakht ◽  
Vladimir Dmitrievskii

The paper presents a comparative analysis of energy consumption by 2.2 kW electric motors of various types and energy efficiency classes in the electric drive of a pump unit with throttle control in a water supply system. Line-start permanent-magnet synchronous motors of the IE4 energy efficiency class and induction motors of the IE4 and IE3 energy efficiency classes of various manufacturers were considered (IE4 and IE3 are labels of energy efficiency classes of electric motors according to IEC 60034-30-1 standard). Energy consumption at a hydraulic load changing under a typical duty cycle was calculated based on the nameplate data of the pump and electric motors. The developed method shows that selecting an electric motor based on the IE energy efficiency class under the IEC 60034-30-1 standard (i.e., based on efficiency at a rated load) may not provide the minimum energy consumption of a variable flow pump unit over a typical duty cycle. In particular, the considered IE4 class line-start permanent-magnet synchronous motors do not provide significant advantages over IE4 class induction motors, and sometimes even over IE3 class induction motors when they are used in variable flow pump units.


2013 ◽  
Vol 291-294 ◽  
pp. 945-948 ◽  
Author(s):  
Feng Qin Yu ◽  
Bei Tian ◽  
Xin Zhang ◽  
Qiang Wang ◽  
Dan Shi Yu ◽  
...  

The building energy consumption is one of three in China's energy consumption, the detection and monitoring for energy consumption of building is the basis for the work of building energy efficiency. This article describes a perception, monitoring and management system of building energy consumption based on Internet of Things technology architecture, in the system, various energy instrumentation is installed inside the building and measurement all kinds of energy consumption data in the perception layer, collection daterminal data connected to the RS485 bus access gateway for data transmission via Ethernet or mobile communication network in the network layer and transport layer, deal with the statistical analysis of the energy consumption data in the application layer. The system has been successfully applied to more than 50 large-scale public building to implement energy consumption monitoring and management, and the support of the underlying data for building energy efficiency.


2014 ◽  
Vol 666 ◽  
pp. 322-326
Author(s):  
Yu Yang Peng ◽  
Jae Ho Choi

Energy efficiency is one of the important hot issues in wireless sensor networks. In this paper, a multi-hop scheme based on a cooperative multi-input multi-outputspatial modulation technique is proposed in order to improve energy efficiency in WSN. In this scheme, the sensor nodes are grouped into clusters in order to achieve a multi-input multi-output system; and a simple forwarding transmission scenario is considered so that the intermediate clusters only forward packets originated from the source cluster down to the sink cluster. In order to verify the performance of the proposed system, the bit energy consumption formula is derived and the optimal number of hopsis determined. By qualitative experiments, the obtained results show that the proposed scheme can deliver the data over multiple hops consuming optimal energy consumption per bit.


Sign in / Sign up

Export Citation Format

Share Document