scholarly journals Strength and Stiffness of Stabilized Alluvial Silt under Frost Actions

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Haibo Wang ◽  
An Deng ◽  
Ping Yang

The Yellow River alluvial silt was stabilized into pavement base materials for cold regions. The stabilizing additives were cement, fly ash, and lime, which were included in a range of combinations and dosages when mixed with the silt. Freeze-thaw cyclic impacts were conducted on the treated samples to assess materials performance of withstanding the frost actions. The tests were conducted on samples cured for 7 days to up to 180 days. Test results show that the cement-fly ash-treated samples outperform the other two stabilization categories with respect to material strength and stiffness developed under both normal and frost conditions. Under the normal conditions, the material unconfined compressive (UC) strength rises to 3.0 MPa on day 28 depending on the cement and fly ash dosage used. If subjected to frost actions, the fly ash inclusions warrant a residual UC strength value of 1.3 MPa and above. The antifrost performance of the cement-fly ash-treated samples is related to thermal buffer capacity of the fly ash particles. Water adsorption and material soundness results agree with the strength and stiffness development. An optimal dosage was 3–6% for the cement and 0.3 for cement to fly ash mass ratio.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 512
Author(s):  
Zhi Cheng ◽  
Xinrong Cheng ◽  
Yuchao Xie ◽  
Zhe Ma ◽  
Yuhao Liu

Desulfurization ash and fly ash are solid wastes discharged from boilers of power plants. Their utilization rate is low, especially desulfurization ash, most of which is stored. In order to realize their resource utilization, they are used to modify loess in this paper. Nine group compaction tests and 32 group direct shear tests are done in order to explore the influence law of desulfurization ash and fly ash on the strength of the loess. Meanwhile, FLAC3D software is used to numerically simulate the direct shear test, and the simulation results and the test results are compared and analyzed. The results show that, with the increase of desulfurization ash’s amount, the shear strength of the modified loess increases first and then decreases. The loess modified by the fly ash has the same law with that of the desulfurization ash. The best mass ratio of modified loess is 80:20. When the mass ratio is 80:20, the shear strength of loess modified by the desulfurization ash is 12.74% higher than that of the pure loess on average and the shear strength of loess modified by fly ash is 3.59% higher than that of the pure loess on average. The effect of the desulfurization ash on modifying the loess is better than that of the fly ash. When the mass ratio is 80:20, the shear strength of loess modified by the desulfurization ash is 9.15% higher than that of the fly ash on average. Comparing the results of the simulation calculation with the actual test results, the increase rate of the shear stress of the FLAC3D simulation is larger than that of the actual test, and the simulated shear strength is about 8.21% higher than the test shear strength.


2017 ◽  
Vol 904 ◽  
pp. 157-161 ◽  
Author(s):  
Mao Chieh Chi ◽  
Hsian Chen ◽  
Tsai Lung Weng ◽  
Ran Huang ◽  
Yih Chang Wang

This study investigated the durability of alkali-activated binders based on blends of fly ash (FA) and ground granulated blast furnace slag (GGBFS). Five fly ash-to-slag ratios of 100/0, 75/25, 50/50, 25/75, and 0/100 by mass were selected to produce alkali-activated fly ash/slag (AAFS) concrete. Sodium oxide (Na2O) concentrations of 6% and 8% of binder weight and activator modulus ratios (mass ratio of SiO2 to Na2O) of 0.8, 1.0, and 1.23 were used as alkaline activators. Test results show that the total charge passed of AAFS concrete is between 2500 and 4000 coulombs, higher than the comparable OPC concrete. However, AAFS concrete exposed to sulfate attack performed better than OPC concrete. Based on the results, 100% slag-based AAFS concrete with Na2O concentration of 8% and activator modulus ratio of 1.23 has the superior performances.


Author(s):  
Masrur Mahedi ◽  
Sahadat Hossain ◽  
Mohammad Faysal ◽  
Mohammad Sadik Khan

The use of both recycled asphalt pavement and recycled concrete aggregates is increasing considerably in pavement construction. These materials are relatively weak and have to be stabilized with cement or other stabilizers. However, because of product variability and lack of strength and stiffness, their applicability has to be evaluated extensively. Traditionally practiced methods of evaluation might be unreasonable in terms of time, cost, reliability, and applicability. Rapid nondestructive methods, such as the spectral analysis of surface wave, impact echo, pulse velocity, and so forth, have the potential to be inexpensive and less time-consuming, as well as offering low variability of the test results. The objective of the study was to assess the potential applicability of the impact echo method in evaluating recycled pavement base materials. Six combinations (0%–100%, 10%–90%, 30%–70%, 50%–50%, 70%–30%, and 100%–0%) of recycled asphalt pavement and recycled concrete aggregates, respectively, treated by four amounts of portland cement (0%, 2%, 4%, and 6%), were evaluated by impact echo, unconfined compression, and repeated-load triaxial test. From the test results, the range of P-wave velocity was between 5,500 in./s and 18,000 in./s, the compressive strength varied from 10 pounds per square inch (psi) and 415 psi, and the tangent modulus range was from 2.8 kips per square inch (ksi) to 41 ksi. Statistical models based on P-wave velocity data were derived for predicting elastic modulus, compressive strength, and resilient modulus. It was found that impact echo has significant potential in characterizing the strength and stiffness properties of cement-treated recycled base materials, which confirms the effectiveness of recycled materials in pavement applications.


2016 ◽  
Vol 78 (5-3) ◽  
Author(s):  
Rudolf Hela ◽  
Martin Tazky ◽  
Lenka Bodnarova

The paper describes possibilities of making use of high temperature combustion fly ash for production of concrete more effective. Efforts for maximal utilization of high temperature combustion fly ash are supported by high production of fly ash worldwide. Use of high temperature fly ash for concrete has to take into account considerably lower speed of hydration reactions compared to pure Portland cement. The paper states results of experimental determination of optimal dosage of fly ash as partial replacement of cement. Dosage of fly ash for production of concrete was optimized. Test results proved positive effect of dosage of fly ash with respect to granulometry of used cement and fly ash. Taking granulometry of fly ash and cement into consideration improves physico-mechanical properties of concrete compared to concrete with fly ash designed standardly without considering granulometry. 


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 875
Author(s):  
Chenchen Luan ◽  
Qingyuan Wang ◽  
Fuhua Yang ◽  
Kuanyu Zhang ◽  
Nodir Utashev ◽  
...  

There have been a few attempts to develop prediction models of splitting tensile strength and reinforcement-concrete bond strength of FAGC (low-calcium fly ash geopolymer concrete), however, no model can be used as a design equation. Therefore, this paper aimed to provide practical prediction models. Using 115 test results for splitting tensile strength and 147 test results for bond strength from experiments and previous literature, considering the effect of size and shape on strength and structural factors on bond strength, this paper developed and verified updated prediction models and the 90% prediction intervals by regression analysis. The models can be used as design equations and applied for estimating the cracking behaviors and calculating the design anchorage length of reinforced FAGC beams. The strength models of PCC (Portland cement concrete) overestimate the splitting tensile strength and reinforcement-concrete bond strength of FAGC, so PCC’s models are not recommended as the design equations.


2021 ◽  
Vol 11 (3) ◽  
pp. 1037
Author(s):  
Se-Jin Choi ◽  
Ji-Hwan Kim ◽  
Sung-Ho Bae ◽  
Tae-Gue Oh

In recent years, efforts to reduce greenhouse gas emissions have continued worldwide. In the construction industry, a large amount of CO2 is generated during the production of Portland cement, and various studies are being conducted to reduce the amount of cement and enable the use of cement substitutes. Ferronickel slag is a by-product generated by melting materials such as nickel ore and bituminous coal, which are used as raw materials to produce ferronickel at high temperatures. In this study, we investigated the fluidity, microhydration heat, compressive strength, drying shrinkage, and carbonation characteristics of a ternary cement mortar including ferronickel-slag powder and fly ash. According to the test results, the microhydration heat of the FA20FN00 sample was slightly higher than that of the FA00FN20 sample. The 28-day compressive strength of the FA20FN00 mix was approximately 39.6 MPa, which was higher than that of the other samples, whereas the compressive strength of the FA05FN15 mix including 15% of ferronickel-slag powder was approximately 11.6% lower than that of the FA20FN00 mix. The drying shrinkage of the FA20FN00 sample without ferronickel-slag powder was the highest after 56 days, whereas the FA00FN20 sample without fly ash showed the lowest shrinkage compared to the other mixes.


Sign in / Sign up

Export Citation Format

Share Document