scholarly journals Application of EMD Technology in Leakage Acoustic Characteristic Extraction of Gas-Liquid, Two-Phase Flow Pipelines

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Jian Ji ◽  
Yuxing Li ◽  
Cuiwei Liu ◽  
Dongxu Wang ◽  
Huafei Jing

Nowadays, the exploitation and transportation of marine oil and gas are mainly achieved using multiphase flow pipelines. Leakage detection of multiphase flow pipelines has always been the most difficult problem regarding the pipeline safety. Compared to other methods, acoustic detection technology has many advantages and high adaptability. However, multiphase flow pipelines are associated with many noise sources that affect the extraction and recognition of leakage signals. In this study, the mechanism of leakage acoustic source generation in gas-liquid, two-phase pipelines is analyzed. First, an acoustic leakage detection experiment in the multiphase pipelines is conducted. The acoustic signals are divided into two classes in accordance with whether leakage occurs or not. The original signals are processed and analyzed based on empirical mode decomposition (EMD) processing technology. Based on the use of signal processing, this study shows that EMD technology can accurately identify the leakage signal in the gas-liquid, two-phase pipeline. Upon increases in the leakage aperture sizes, the entropy of the EMD information of the acoustic signals gradually increases. Finally, the method of the normalized energies characteristic value of each IMF component is also applied in leakage signal processing. When the liquid flow is maintained constant, the energy values of the IMF components change in a nonlinear manner when the gas flow rate increases. This verifies the feasibility of use of the acoustic wave sensing technology for leak detection in multiphase flow pipelines, which has important theoretical significance for promoting the development of safe and efficient operation in two-phase flow pipelines.

2021 ◽  
pp. 1-18
Author(s):  
L. M. Ruiz Maraggi ◽  
L. W. Lake ◽  
M. P. Walsh

Summary A common approach to forecast production from unconventional reservoirs is to extrapolate single-phase flow solutions. This approach ignores the effects of multiphase flow, which exist once the reservoir pressure falls below the bubble/dewpoint. This work introduces a new two-phase (oil and gas) flow solution suitable to extrapolating oil and gas production using scaling principles. In addition, this study compares the application of the two-phase and the single-phase solutions to estimates of production from tight-oil wells in the Wolfcamp Formation of west Texas. First, we combine the oil and the gas flow equations into a single two-phase flow equation. Second, we introduce a two-phase pseudopressure to help linearize the pressure diffusivity equation. Third, we cast the two-phase diffusion equation into a dimensionless form using inspectional analysis. The output of the model is a predicted dimensionless flow rate that can be easily scaled using two parameters: a hydrocarbon pore volume and a characteristic time. This study validates the solution against results of a commercial simulator. We also compare the results of both the two-phase and the single-phase solutions to forecast wells. The results of this research are the following: First, we show that single-phase flow solutions will consistently underestimate the oil ultimate recovery factors (URFs) for solution gas drives. The degree of underestimation will depend on the reservoir and flowing conditions as well as the fluid properties. Second, this work presents a sensitivity analysis of the pressure/volume/temperature (PVT) properties, which shows that lighter oils (more volatile) will yield larger recovery factors for the same drawdown conditions. Third, we compare the estimated ultimate recovery (EUR) predictions for two-phase and single-phase solutions under boundary-dominated flow (BDF) conditions. The results show that single-phase flow solutions will underestimate the ultimate cumulative oil production of wells because they do not account for liberation of dissolved gas and its subsequent expansion (pressure support) as the reservoir pressure falls below the bubblepoint. Finally, the application of the two-phase model provides a better fit when compared with the single-phasesolution. The present model requires very little computation time to forecast production because it only uses two fitting parameters. It provides more realistic estimates of URFs and EURs, when compared with single-phase flow solutions, because it considers the expansion of the oil and gas phases for saturated flow. Finally, the solution is flexible and can be applied to forecast both tight-oil and gas condensate wells.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5486
Author(s):  
Peng Liu ◽  
Yumo Wang ◽  
Feng Yan ◽  
Chaofei Nie ◽  
Xin Ouyang ◽  
...  

Electric submersible pumps (ESPs) are widely used in the oil and gas industry for crude-oil lifting, especially in subsea oil fields or underground storage caverns. The failure of ESPs causes a large economic cost mainly attributed to a break in production continuity, as the ESP cannot be easily replaced. Therefore, the assurance of safe and efficient operation of ESPs has attracted high attention in recent years, although the problem still remains challenging given the complexity of carrying fluid and the mechanical structure of the ESP. In this article, we systematically review both the high-impact, classic contributions and the most up-to-date, current opinions in experimental and numerical advances of viscous effects and two-phase flow in ESPs. We specifically focus on the applications in the oil and gas industry and point out a few current challenges in the operation of ESPs. We aim to guide the audience which is new to the area of ESPs to the correct articles related to their interests, including classic work and recent advances.


2003 ◽  
Vol 3 ◽  
pp. 266-270
Author(s):  
B.H. Khudjuyerov ◽  
I.A. Chuliev

The problem of the stability of a two-phase flow is considered. The solution of the stability equations is performed by the spectral method using polynomials of Chebyshev. A decrease in the stability region gas flow with the addition of particles of the solid phase. The analysis influence on the stability characteristic of Stokes and Archimedes forces.


Author(s):  
Ikpe E. Aniekan ◽  
Owunna Ikechukwu ◽  
Satope Paul

Four different riser pipe exit configurations were modelled and the flow across them analysed using STAR CCM+ CFD codes. The analysis was limited to exit configurations because of the length to diameter ratio of riser pipes and the limitations of CFD codes available. Two phase flow analysis of the flow through each of the exit configurations was attempted. The various parameters required for detailed study of the flow were computed. The maximum velocity within the pipe in a two phase flow were determined to 3.42 m/s for an 8 (eight) inch riser pipe. After thorough analysis of the two phase flow regime in each of the individual exit configurations, the third and the fourth exit configurations were seen to have flow properties that ensures easy flow within the production system as well as ensure lower computational cost. Convergence (Iterations), total pressure, static pressure, velocity and pressure drop were used as criteria matrix for selecting ideal riser exit geometry, and the third exit geometry was adjudged the ideal exit geometry of all the geometries. The flow in the third riser exit configuration was modelled as a two phase flow. From the results of the two phase flow analysis, it was concluded that the third riser configuration be used in industrial applications to ensure free flow of crude oil and gas from the oil well during oil production.


2019 ◽  
Vol 53 (5) ◽  
pp. 1763-1795 ◽  
Author(s):  
Khaled Saleh

This article is the first of two in which we develop a relaxation finite volume scheme for the convective part of the multiphase flow models introduced in the series of papers (Hérard, C.R. Math. 354 (2016) 954–959; Hérard, Math. Comput. Modell. 45 (2007) 732–755; Boukili and Hérard, ESAIM: M2AN 53 (2019) 1031–1059). In the present article we focus on barotropic flows where in each phase the pressure is a given function of the density. The case of general equations of state will be the purpose of the second article. We show how it is possible to extend the relaxation scheme designed in Coquel et al. (ESAIM: M2AN 48 (2013) 165–206) for the barotropic Baer–Nunziato two phase flow model to the multiphase flow model with N – where N is arbitrarily large – phases. The obtained scheme inherits the main properties of the relaxation scheme designed for the Baer–Nunziato two phase flow model. It applies to general barotropic equations of state. It is able to cope with arbitrarily small values of the statistical phase fractions. The approximated phase fractions and phase densities are proven to remain positive and a fully discrete energy inequality is also proven under a classical CFL condition. For N = 3, the relaxation scheme is compared with Rusanov’s scheme, which is the only numerical scheme presently available for the three phase flow model (see Boukili and Hérard, ESAIM: M2AN 53 (2019) 1031–1059). For the same level of refinement, the relaxation scheme is shown to be much more accurate than Rusanov’s scheme, and for a given level of approximation error, the relaxation scheme is shown to perform much better in terms of computational cost than Rusanov’s scheme. Moreover, contrary to Rusanov’s scheme which develops strong oscillations when approximating vanishing phase solutions, the numerical results show that the relaxation scheme remains stable in such regimes.


2021 ◽  
Author(s):  
Ekhwaiter Abobaker ◽  
Abadelhalim Elsanoose ◽  
Mohammad Azizur Rahman ◽  
Faisal Khan ◽  
Amer Aborig ◽  
...  

Abstract Perforation is the final stage in well completion that helps to connect reservoir formations to wellbores during hydrocarbon production. The drilling perforation technique maximizes the reservoir productivity index by minimizing damage. This can be best accomplished by attaining a better understanding of fluid flows that occur in the near-wellbore region during oil and gas operations. The present work aims to enhance oil recovery by modelling a two-phase flow through the near-wellbore region, thereby expanding industry knowledge about well performance. An experimental procedure was conducted to investigate the behavior of two-phase flow through a cylindrical perforation tunnel. Statistical analysis was coupled with numerical simulation to expand the investigation of fluid flow in the near-wellbore region that cannot be obtained experimentally. The statistical analysis investigated the effect of several parameters, including the liquid and gas flow rate, liquid viscosity, permeability, and porosity, on the injection build-up pressure and the time needed to reach a steady-state flow condition. Design-Expert® Design of Experiments (DoE) software was used to determine the numerical simulation runs using the ANOVA analysis with a Box-Behnken Design (BBD) model and ANSYS-FLUENT was used to analyses the numerical simulation of the porous media tunnel by applying the volume of fluid method (VOF). The experimental data were validated to the numerical results, and the comparison of results was in good agreement. The numerical and statistical analysis demonstrated each investigated parameter’s effect. The permeability, flow rate, and viscosity of the liquid significantly affect the injection pressure build-up profile, and porosity and gas flow rate substantially affect the time required to attain steady-state conditions. In addition, two correlations obtained from the statistical analysis can be used to predict the injection build-up pressure and the required time to reach steady state for different scenarios. This work will contribute to the clarification and understanding of the behavior of multiphase flow in the near-wellbore region.


2011 ◽  
Vol 189-193 ◽  
pp. 2181-2184
Author(s):  
Heng Zhang ◽  
Xiao Ming Qian ◽  
Zhi Min Lu ◽  
Yuan Bai

The functions of hydroentangled nonwovens are determined by the degree of the fiber entanglement, which depend mainly on parameters of the water jet. According to the spun lacing technology, this paper set up the numerical model based on the simplified water jetting model, establishing the governing equations, and the blended two-phase flow as the multiphase flow model. This paper simulation the water needle after the water jetting from the water needle plate in the different pressure (100bar, 60bar, 45bar, 35bar).


2011 ◽  
Vol 383-390 ◽  
pp. 4922-4927
Author(s):  
Peng Xia Xu ◽  
Yan Feng Geng

Wet gas flow is a typical two-phase flow with low liquid fractions. As differential pressure signal contains rich information of flow parameters in two-phase flow metering, a new method is proposed for wet gas flow metering based on differential pressure (DP) and blind source separation (BSS) techniques. DP signals are from a couple of slotted orifices and the BSS method is based on time-frequency analysis. A good relationship between the liquid flow rate and the characteristic quantity of the separated signal is established, and a differential pressure correlation for slotted orifice is applied to calculate the gas flow rate. The calculation results are good with 90% relative errors less than ±10%. The results also show that BSS is an effective method to extract liquid flow rate from DP signals of wet gas flow, and to analysis different interactions among the total DP readings.


Sign in / Sign up

Export Citation Format

Share Document