scholarly journals Inhibition of MDM2 via Nutlin-3A: A Potential Therapeutic Approach for Pleural Mesotheliomas with MDM2-Induced Inactivation of Wild-Type P53

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Robert F. H. Walter ◽  
Robert Werner ◽  
Michael Wessolly ◽  
Elena Mairinger ◽  
Sabrina Borchert ◽  
...  

Previously, our group demonstrated that nuclear expression of E3 ubiquitin ligase (MDM2) in malignant pleural mesothelioma (MPM) is significantly associated with decreased overall survival. A possible explanation may be that overexpression of MDM2 leads to a proteasomal degradation of TP53 that eventually results in a loss of TP53-induced apoptosis and senescence. It is well known from other tumor entities that restoration of TP53 activity, e.g., by MDM2 inhibition, results in an instant TP53-induced stress and/or DNA damage response of cancer cells. Nutlin-3A (acis-imidazoline analogue) has been described as a potent and selective MDM2 inhibitor preventing MDM2-TP53-interaction by specific binding to the hydrophobic TP53-binding pocket of MDM2. In the present study, the effects of MDM2 inhibition in MPM via Nutlin-3A and standard platinum based chemotherapeutic agents were comparatively tested in three MPM cell lines (NCI-H2052, MSTO-211H, and NCI-H2452) showing different expression profiles of TP53, MDM2, and its physiological inhibitor of MDM2—P14/ARF. Ourin vitroexperiments on MPM cell lines revealed that Nutlin-3A in combination with cisplatin resulted in up to 9.75 times higher induction of senescence (p=0.0050) and up to 5 times higher apoptosis rate (p=0.0067) compared to the commonly applied cisplatin and pemetrexed regimens. Thus Nutlin-3A, a potent inhibitor of MDM2, is associated with a significant induction of senescence and apoptosis in MPM cell lines, making Nutlin-3A a promising substance for a targeted therapy in the subgroup of MPM showing MDM2 overexpression.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2162-2162 ◽  
Author(s):  
Rongqing Pan ◽  
Kensuke Kojima ◽  
Zhuanzhen Zheng ◽  
Vivian R Ruvolo ◽  
Gwen Nichols ◽  
...  

Abstract Background: Acute myeloid leukemia (AML) is characterized by the clonal expansion of immature myeloid cells. AML is treated primarily with chemotherapy, but the 5-year survival rate has only marginally increased over the past few decades, highlighting the need for novel therapies to achieve higher cure rates with more acceptable toxicities. Bcl-2 family proteins, together with TP53, are the central regulators of apoptosis. Overexpression of Bcl-2 protein is associated with leukemia progression and chemoresistance. We have observed elevated expression of Bcl-2 in AML and recently demonstrated that Bcl-2 inhibition by ABT-199 effectively induced apoptosis in AML (Pan, et.al., Cancer Discovery, 2014). However, resistance to ABT-199 was observed in cells expressing high levels of Mcl-1 or Bcl-xL. Moreover, a recent study showed heterogeneous but overlapping expression of Bcl-2, Mcl-1, and Bcl-xL proteins in 577 AML patient samples (Bogenberger, et. al., Leukemia, 2014). Although common in solid tumors, p53 mutations are relatively rare in AML. However, p53 functions are diminished by overexpression of MDM2 protein, an E3 ubiquitin ligase of p53 and an inhibitor of p53 transactivation. We previously reported MDM2 overexpression in 53% of primary AMLs (Kojima et al., Blood, 2005). Our group also demonstrated that p53 activation by Nutlins, the prototypical MDM2 inhibitors, induced apoptosis and growth inhibition in AML. Rationale: Since p53 activation by MDM2 inhibitors upregulates pro-apoptotic Bcl-2 proteins like NOXA, PUMA, and Bax, which counteract Mcl-1 and Bcl-xL, we hypothesized that the second-generation MDM2 inhibitor RG7388 could overcome AML resistance to Bcl-2-specific ABT-199, and that the combination could synergistically enhance apoptosis in AML. Results: We first demonstrated that RG7388 induced apoptosis exclusively in p53 wild type (wt) cells. RG7388 was essentially ineffective in p53 mutant or null AML cell lines such as HL-60, KG1 and THP1 (48h IC50s > 5 μM). Nonetheless, it showed high potency against p53 wt cell lines (48h IC50s: MOLM13 = 21.7 nM, MV-4-11 = 29.2 nM). Furthermore, stable knockdown of TP53 rendered the wt cell lines completely resistant to RG7388 (IC50s > 5 μM), confirming TP53-specificity. To study if RG7388 was able to overcome inherent resistance to ABT-199, we tested its efficacy on OCI-AML3 cells, which are inherently resistant to ABT-199, AraC and Idarubicin. As a single agent, RG7388 potently killed OCI-AML3 cells (48h IC50 = 148 nM). Importantly, RG7388 was ~20-fold more effective in OCI-AML3 cells than its predecessors Nutlin-3a and RG7112. We also examined the time- and dose-response of RG7388 in several genetically diverse AML cell lines (p53 wt) and found that 100 nM RG7388 was able to induce apoptosis and inhibit cell growth within 12 h. Next we studied whether RG7388 synergizes with ABT-199 to kill the refractory OCI-AML3 cells. A combination index of 0.35 (Chou-Talalay method) indicated a strong synergy between the two compounds. The combination exhibited higher activity in killing OCI-AML3 cells than either agent alone (48h IC50s: ABT-199 = 1680 nM, RG7388 = 148 nM, ABT+RG = 28 nM). Similar synergy was observed in additional AML cell lines and in primary samples. Next, we generated ABT-199 resistant cells by continuous exposure of initially sensitive AML cells to escalating concentrations of ABT-199. While 1000 nM ABT-199 had no effects on the viability of these cells, additional treatment with 30 nM RG7388 effectively killed them. This finding suggested that RG7388 was able to overcome acquired resistance to ABT-199. The mechanisms underlying this resensitization and its synergism with ABT-199 are under investigation using in vitro and in vivo model systems. Conclusions: The novel MDM2 inhibitor RG7388 induces growth arrest and apoptosis selectively in p53 wt AML cells. Importantly, the combination of RG7388 with ABT-199 synergistically induced apoptosis in AML cell lines and primary patient cells, and RG7388 was able to overcome inherent or acquired resistance to ABT-199. Since both Bcl-2 and MDM2 overexpression are associated with poor prognosis in AML, the proposed combination of the two clinical-stage compounds could have considerable clinical potential. We will report on ongoing experiments with primary AML cells in NSG mice to determine the potential of this combinatorial approach to eliminate AML stem cells. Disclosures Nichols: Roche: Employment, Equity Ownership. Leverson:abbvie: Employment, Equity Ownership. Dangl:Roche: Employment, Patents & Royalties. Konopleva:Abbvie: Research Funding. Andreeff:Roche: Research Funding; Abbvie: Research Funding.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 445-445
Author(s):  
Kensuke Kojima ◽  
Marina Konopleva ◽  
Ismael J. Samudio ◽  
Teresa McQueen ◽  
Twee Tsao ◽  
...  

Abstract Fludarabine containing combination therapies are the current standard for CLL therapy, in which p53-mediated induction of apoptosis contributes to leukemia cell killing. Although TP53 mutations occur in only 5–10% of patients with CLL, inactivation of the p53 pathway also occurs through Mdm2 overexpression or Atm deficiency. We investigate if recently developed potent and selective small-molecule antagonists of Mdm2, Nutlins, can overcome functional p53 inactivation associated with Mdm2 overexpression or Atm deficiency in CLL. Nutlin-3a caused a dose- and time-dependent increase in the percentage of Annexin V-positive cells in 20 primary CLL samples, irrespective of Mdm2 or Atm status. Samples with low Atm levels (n=3) were resistant to fludarabine. In addition to the transcriptional activation of target genes in the nucleus, cytoplasmic p53 can trigger transcription-independent apoptosis at the mitochondria. Samples with a cytoplasmic p53 localization pattern (n=7) showed a higher percentage of Nutlin-induced apoptosis than those with a nuclear pattern (n=8; P < .05). Furthermore, the inhibitory effect of cycloheximide pretreatment showed a negative correlation with the degree of Nutlin-induced apoptosis (r = - 0.617, P < .05). These findings suggest that the transcription-independent pathway may have stronger apoptogenic activity than the transcription-dependent pathway. The degree of Nutlin-3a-induced apoptosis directly correlated with apoptosis induced by the same concentrations (1–10 μM) of fludarabine in the early (24 hr) time period, and the Nutlin-3a/fludarabine combination induced synergistic apoptosis [averaged combination index (CI): 0.68]. Interestingly, this synergism was not affected by Mdm2 overexpression (CI: 0.59, n=12) or Atm deficiency (CI: 0.79, n=3). We conclude that (1) Mdm2 inhibitor Nutlin-3a efficiently induces p53-dependent apoptosis in wild-type p53 CLL cells, independent of Mdm2 overexpression or Atm deficiency, (2) transactivation-dependent apoptosis does not always play a major role in p53-dependent apoptosis and the exclusive activation of transactivation-independent pathway can fully induce apoptosis, (3) p53 activation plays a critical role in the early phase of fludarabine-induced apoptosis in vitro, and (4) Mdm2 inhibition and fludarabine synergistically induce apoptosis, which may overcome fludarabine-resistance in CLL.


2019 ◽  
Vol 19 (11) ◽  
pp. 914-926 ◽  
Author(s):  
Maiara Bernardes Marques ◽  
Michael González-Durruthy ◽  
Bruna Félix da Silva Nornberg ◽  
Bruno Rodrigues Oliveira ◽  
Daniela Volcan Almeida ◽  
...  

Background:PIM-1 is a kinase which has been related to the oncogenic processes like cell survival, proliferation, and multidrug resistance (MDR). This kinase is known for its ability to phosphorylate the main extrusion pump (ABCB1) related to the MDR phenotype.Objective:In the present work, we tested a new mechanistic insight on the AZD1208 (PIM-1 specific inhibitor) under interaction with chemotherapy agents such as Daunorubicin (DNR) and Vincristine (VCR).Materials and Methods:In order to verify a potential cytotoxic effect based on pharmacological synergism, two MDR cell lines were used: Lucena (resistant to VCR) and FEPS (resistant to DNR), both derived from the K562 non-MDR cell line, by MTT analyses. The activity of Pgp was ascertained by measuring accumulation and the directional flux of Rh123. Furthermore, we performed a molecular docking simulation to delve into the molecular mechanism of PIM-1 alone, and combined with chemotherapeutic agents (VCR and DNR).Results:Our in vitro results have shown that AZD1208 alone decreases cell viability of MDR cells. However, co-exposure of AZD1208 and DNR or VCR reverses this effect. When we analyzed the ABCB1 activity AZD1208 alone was not able to affect the pump extrusion. Differently, co-exposure of AZD1208 and DNR or VCR impaired ABCB1 activity, which could be explained by compensatory expression of abcb1 or other extrusion pumps not analyzed here. Docking analysis showed that AZD1208 is capable of performing hydrophobic interactions with PIM-1 ATP- binding-site residues with stronger interaction-based negative free energy (FEB, kcal/mol) than the ATP itself, mimicking an ATP-competitive inhibitory pattern of interaction. On the same way, VCR and DNR may theoretically interact at the same biophysical environment of AZD1208 and also compete with ATP by the PIM-1 active site. These evidences suggest that AZD1208 may induce pharmacodynamic interaction with VCR and DNR, weakening its cytotoxic potential in the ATP-binding site from PIM-1 observed in the in vitro experiments.Conclusion:Finally, the current results could have a pre-clinical relevance potential in the rational polypharmacology strategies to prevent multiple-drugs resistance in human leukemia cancer therapy.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2012
Author(s):  
Kathryn M. Appleton ◽  
Charuta C. Palsuledesai ◽  
Sean A. Misek ◽  
Maja Blake ◽  
Joseph Zagorski ◽  
...  

The Ras/MEK/ERK pathway has been the primary focus of targeted therapies in melanoma; it is aberrantly activated in almost 80% of human cutaneous melanomas (≈50% BRAFV600 mutations and ≈30% NRAS mutations). While drugs targeting the MAPK pathway have yielded success in BRAFV600 mutant melanoma patients, such therapies have been ineffective in patients with NRAS mutant melanomas in part due to their cytostatic effects and primary resistance. Here, we demonstrate that increased Rho/MRTF-pathway activation correlates with high intrinsic resistance to the MEK inhibitor, trametinib, in a panel of NRAS mutant melanoma cell lines. A combination of trametinib with the Rho/MRTF-pathway inhibitor, CCG-222740, synergistically reduced cell viability in NRAS mutant melanoma cell lines in vitro. Furthermore, the combination of CCG-222740 with trametinib induced apoptosis and reduced clonogenicity in SK-Mel-147 cells, which are highly resistant to trametinib. These findings suggest a role of the Rho/MRTF-pathway in intrinsic trametinib resistance in a subset of NRAS mutant melanoma cell lines and highlight the therapeutic potential of concurrently targeting the Rho/MRTF-pathway and MEK in NRAS mutant melanomas.


Blood ◽  
2008 ◽  
Vol 111 (5) ◽  
pp. 2797-2805 ◽  
Author(s):  
Feng-Ting Liu ◽  
Samir G. Agrawal ◽  
John G. Gribben ◽  
Hongtao Ye ◽  
Ming-Qing Du ◽  
...  

Proapoptotic Bcl-2 family member Bax is a crucial protein in the induction of apoptosis, and its activation is required for this process. Here we report that Bax is a short-lived protein in malignant B cells and Bax protein levels decreased rapidly when protein synthesis was blocked. Malignant B cells were relatively resistant to tumor necrosis factor–related apoptosis inducing ligand (TRAIL)–induced apoptosis, and this correlated with low basal Bax protein levels. Furthermore, during treatment with TRAIL, the resistant cell lines showed prominent Bax degradation activity. This degradation activity was localized to mitochondrial Bax and could be prevented by truncated Bid, a BH3-only protein; in contrast, cytosolic Bax was relatively stable. The proteasome inhibitor bortezomib is a potent drug in inducing apoptosis in vitro in malignant B-cell lines and primary chronic lymphocytic leukemic (CLL) cells. In CLL cells, bortezomib induced Bax accumulation, translocation to mitochondria, conformational change, and oligomerization. Accumulation and stabilization of Bax protein by bortezomib-sensitized malignant B cells to TRAIL-induced apoptosis. This study reveals that Bax instability confers resistance to TRAIL, which can be reversed by Bax stabilization with a proteasome inhibitor.


2008 ◽  
Vol 294 (3) ◽  
pp. E540-E550 ◽  
Author(s):  
Elida Lai ◽  
George Bikopoulos ◽  
Michael B. Wheeler ◽  
Maria Rozakis-Adcock ◽  
Allen Volchuk

Chronic exposure to elevated saturated free fatty acid (FFA) levels has been shown to induce endoplasmic reticulum (ER) stress that may contribute to promoting pancreatic β-cell apoptosis. Here, we compared the effects of FFAs on apoptosis and ER stress in human islets and two pancreatic β-cell lines, rat INS-1 and mouse MIN6 cells. Isolated human islets cultured in vitro underwent apoptosis, and markers of ER stress pathways were elevated by chronic palmitate exposure. Palmitate also induced apoptosis in MIN6 and INS-1 cells, although the former were more resistant to both apoptosis and ER stress. MIN6 cells were found to express significantly higher levels of ER chaperone proteins than INS-1 cells, which likely accounts for the ER stress resistance. We attempted to determine the relative contribution that ER stress plays in palmitate-induced β-cell apoptosis. Although overexpressing GRP78 in INS-1 cells partially reduced susceptibility to thapsigargin, this failed to reduce palmitate-induced ER stress or apoptosis. In INS-1 cells, palmitate induced apoptosis at concentrations that did not result in significant ER stress. Finally, MIN6 cells depleted of GRP78 were more susceptible to tunicamycin-induced apoptosis but not to palmitate-induced apoptosis compared with control cells. These results suggest that ER stress is likely not the main mechanism involved in palmitate-induced apoptosis in β-cell lines. Human islets and MIN6 cells were found to express high levels of stearoyl-CoA desaturase-1 compared with INS-1 cells, which may account for the decreased susceptibility of these cells to the cytotoxic effects of palmitate.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 149
Author(s):  
David J. Wooten ◽  
Indu Sinha ◽  
Raghu Sinha

Survival rate for pancreatic cancer remains poor and newer treatments are urgently required. Selenium, an essential trace element, offers protection against several cancer types and has not been explored much against pancreatic cancer specifically in combination with known chemotherapeutic agents. The present study was designed to investigate selenium and Gemcitabine at varying doses alone and in combination in established pancreatic cancer cell lines growing in 2D as well as 3D platforms. Comparison of multi-dimensional synergy of combinations’ (MuSyc) model and highest single agent (HSA) model provided quantitative insights into how much better the combination performed than either compound tested alone in a 2D versus 3D growth of pancreatic cancer cell lines. The outcomes of the study further showed promise in combining selenium and Gemcitabine when evaluated for apoptosis, proliferation, and ENT1 protein expression, specifically in BxPC-3 pancreatic cancer cells in vitro.


2021 ◽  
Author(s):  
Jakub Kryczka ◽  
Joanna Boncela

Abstract Colorectal cancer (CRC) is one of the most prominent causes of cancer death worldwide. Chemotherapeutic regimens consisting of different drugs combinations such as 5-fluorouracil, and oxaliplatin (FOLFOX) or irinotecan (FOLFIRI) have been proven successful in the treatment of CRC. However, chemotherapy often leads to the acquisition of cancer drug resistance followed by metastasis and in the aftermath therapeutic failure. The molecular mechanism responsible for drug resistance is still unclear. The systemic search for new biomarkers of this phenomenon may identify new genes and pathways. To understand the drug resistance mechanism in CRC, the in vitro study based on the molecular analysis of drug-sensitive cells lines vs drug-resistant cells lines has been used. In our study to bridge the gap between in vitro and in vivo study, we compared the expression profiles of cell lines and patient samples from the publicly available database to select the new candidate genes for irinotecan resistance. Using The Gene Expression Omnibus (GEO) database of CRC cell lines (HT29, HTC116, LoVo, and their respective irinotecan-resistant variants) and patient samples (GSE42387, GSE62080, and GSE18105) we compared the changes in the mRNA expression profile of the main genes involved in irinotecan body’s processing, such as transport out of the cells and metabolism. Furthermore, using a protein-protein interaction network of differently expressed genes between FOLFIRI resistant and sensitive CRC patients, we have selected top networking proteins (upregulated: NDUFA2, SDHD, LSM5, DCAF4, and COX10, downregulated: RBM8A, TIMP1, QKI, TGOLN2, and PTGS2). Our analysis provided several potential irinotecan resistance markers, previously not described as such.


2021 ◽  
Vol 17 ◽  
Author(s):  
Rania Helmy Abd El-Hameed ◽  
Samar Said Fatahala ◽  
Amira Ibrahim Sayed

Background: Thiobezimidazoles reveal various pharmacological activities due to similarities with many natural and synthetic molecules, they can easily interact with biomolecules of living systems. Objective: A series of substituted 2-thiobezimidazoles has been synthesized .Twelve final compounds were screened for in vitro anti-cancer activities against sixty different cell-lines. Methods: The spectral data of the synthesized compounds were characterized. Docking study for active anticancer compounds and CDK2/CyclinA2 Kinase assay against standard reference; Imatinib were performed. Results: Two compounds (3c&3l) from the examined series revealed effective antitumor activity in vitro against two-cancer cell lines (Colon Cancer (HCT-116) and Renal Cancer (TK-10). The docking study of synthesized molecules discovered a requisite binding pose in CDK-ATP binding pocket. 3c &3l were promoted in the CDK2/CyclinA2 Kinase assay against standard reference Imatinib. Conclusion: Against all tested compounds ; two compounds 3c &3l were found active against two types of cell-lines.


Sign in / Sign up

Export Citation Format

Share Document