scholarly journals Preparation and Characterization of Polyelectrolyte Complexes of Hibiscus esculentus (Okra) Gum and Chitosan

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Vivekjot Brar ◽  
Gurpreet Kaur

Polyelectrolyte complexes (PECs) of Okra gum (OKG) extracted from fruits of Hibiscus esculentus (Malvaceae) and chitosan (CH) were prepared using ionic gelation technique. The PECs were insoluble and maximum yield was obtained at weight ratio of 7 : 3. The supernatant obtained after extracting PECs was clearly representing complete conversion of polysaccharides into PECs. Complexation was also evaluated by measuring the viscosity of supernatant after precipitation of PECs. The dried PECs were characterized using FTIR, DSC, zeta potential, water uptake, and SEM studies. Thermal analysis of PECs prepared at all ratios (10 : 90, 20 : 80, 30 : 70, 40 : 60, 50 : 50, 60 : 40, 70 : 30, 80 : 20, and 90 : 10; OKG : CH) depicted an endothermic peak at approximately 240°C representing cleavage of electrostatic bond between OKG and CH. The optimized ratio (7 : 3) exhibited a zeta potential of −0.434 mV and displayed a porous structure in SEM analysis. These OKG-CH PECs can be further employed as promising carrier for drug delivery.

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Dwi Saryanti ◽  
Dian Nugraheni ◽  
Nisa Sindi Astuti

Nanoparticles are used in drug delivery which can increase mass transfer so increase the absorption and effectiveness of the drug. Therefore, its prospect to improve antibacterial and antioxidants activities of betel leaves. The research aimed to preparation and characterization of betel leaf extract using ionic gelation technique. The formulation of nanoparticles from betel leaf extract with ionic gelation method using alginate and CaCl2 with a ratio of 2.5: 1. The characterization of the nanoparticles includes particle size analysis, zeta potential, particle morphology and determination of flavonoid content. Particle size analysis demonstrated that the betel leaf extract nanoparticles had a particle size of 243,03 ± 1,48 nm, zeta potential of -23,0 ± 0,35 mV and morphology of particle showed that a flat shape. The betle leaf exctract nanoparticle positively contained flavonoid with Rf 0.7 equivalent to quercetin. The betel leaf extract can be made nanoparticles with ionic gelation method using alginate and CaCl2.


2017 ◽  
Vol 10 (2) ◽  
pp. 58 ◽  
Author(s):  
Kun Tanti Dewandari ◽  
Sri Yuliani ◽  
Sedarnawati Yasni

<p>Sirih merah merupakan salah satu tanaman obat yang dapat dimanfaatkan sebagai minuman fungsional, karena mengandung senyawa fitokimia dari golongan alkaloid, flavonoid, dan tanin yang berkhasiat sebagai antihiperglikemik dan antioksidan. Salah satu kelemahan dalam penyerapan bahan aktif adalah bioavaibilitasnya yang rendah. Salah satu teknologi yang dapat digunakan adalah teknologi nano. Tujuan penelitian ini adalah melakukan ekstraksi sirih merah, sintesis nanopartikel dan karakterisasinya serta mengetahui stabilitasnya pada beberapa kondisi pH. Hasil penelitian menunjukkan bahwa ekstraksi etanol 96% dengan maserasi memberikan hasil yang terbaik dengan rendemen 7,2 ± 0,25%, kapasitas antioksidan 10892,86 ± 6,06 AAE?g/ml, IC 50 sebesar 46,51 ± 0,05 AAE?g/ml serta total fenol 2388,37 ± 0,3 mg/100g dengan komponen volatil utama yaitu sabinen dan mirsen. Konsentrasi kitosan 0,2% dengan rata-rata diameter 197,20 ± 11,68 nm memberikan hasil yang terbaik dengan nilai IP 0,235 ± 0,03, zeta potensial 32,75 ± 2,11 mV, kapasitas antioksidan 5502,00 ± 8,48 AAE?g/ml, nilai IC 50 yaitu 279,10 ± 0,05 AAE?g/ml dan total fenol 568,76 ± 3,0 mg/100g. Enkapsulasi nanopartikel dengan penyalut campuran maltodekstrin dan isolat protein menunjukkan terjadi peningkatan ukuran partikel dimana dengan pengisi maltodekstrin (M) sebesar 8952,7 ± 2598 nm dan campuran maltodekstrin dan isolat protein kedelai sebesar 8266,9 ± 1134,9 nm. Stabilitas pada beberapa kondisi pH menunjukkan bahwa penurunan persentase total fenol terbesar pada pH basa (6,7, dan 8) dibandingkan pada kondisi pH asam (2,3 dan 4).</p><p>Kata kunci :ekstraksi, antioksidan, daun sirih merah, nanopartikel</p><p>English Version Abstract</p><p>Red betel, a medicinal plant containing alcaloids, flavonoids and tannins, has health benneficial effects as antihyperglycemics and antioxidants. However, its low bioavailablity limit the applications of this extract for nutraceuticals. Transformation of extract into nanoparticles through ionic gelation process was done to enhance its bioavailability. This study is aimed at extracting the active ingredients of red betel leaves using organic solvent, preparing nanoparticles, and characterizing their properties including their stability at different pHs. The study showed the highest yield of red betel leaves extract was observed in the extraction using ethanol 96% (7.2 ± 0,25%) with the capacity of antioxidant of 10892.86 ± 6.06 AAE?g/ml, the IC 50 of 46.51 ± 0.05 AAE?g/ml, the total phenol of 2388.37 ± 0.3 mg/100g and the major volatile compounds of sabinene dan myrcene. Chitosan at a concentration of 0.2% produced nanoparticle size of 197.20 ± 11.68 nm with PDI 0,235 ± 0,03, zeta potential 32.75 ± 2.11mV, antioxidant capacity 5502.00 ± 8.48 AAE?g/ml, nilai IC 50 yaitu 279,10 ± 0,05 AAE?g/ml dan total fenol 568,76 ± 3,0 mg/100g. Encapsulation of nanoparticles using maltodextrin and protein isolates resulted in increases in particle size, in which maltodextrin gave slightly largle particles (8952.7 ± 2598 nm) than did combination of maltodextrin and soy proten isolate (8266.9 ± 1134.9 nm). Nanoparticles at pHs of 6, 7 and 8 exhibited larger decreases in total phenol as compared to that at lower pHs (2, 3, and 4).</p><p>Keywords : extraction, antioxidant, red betel leaves, nanoparticles</p>


2017 ◽  
Vol 14 (1) ◽  
pp. 117-125
Author(s):  
Baghdad Science Journal

In the current study, synthesis and characterization of silver nanoparticles (AgNPs) before and after functionalization with ampicillin antibiotic and their application as anti-pathogenic agents towards bacteria were investigated. AgNPs were synthesized by a green method from AgNO3 solution with glucose subjected to microwave radiation. Characterization of the nanoparticles was conducted using UV-Vis spectroscopy, scanning electron microscopy (SEM), zeta potential determination and Fourier transform infrared (FTIR) spectroscopy. From SEM analysis, the typical silver nanoparticle particle size was found to be 30 nm and Zeta potential measurements gave information about particle stability. Analysis of FTIR patterns and UV-VIS spectroscopy confirmed the production of nanosilver particles. The activity of produced silver NP was tested against three pathogens (Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii) in both liquid and solid growth medium. AgNPs presented potential antibacterial activity, against tested bacteria. Ag and Ag-AMP nanoparticles were detected to have penitent antimicrobial. The optical density (OD) of the culture solution and measuring zones of inhibition were used to monitor the growth of bacteria in liquid and solid growth medium respectively


Author(s):  
Sri Atun ◽  
Retno Arianingrum ◽  
Stela Dimitrova

The main objectives of this research are to synthesize chitosan nanoparticles of chloroform fraction of K. rotunda, to characterize the products, and to conduct a biological test on these products as an antioxidant. Chloroform fraction of K. rotunda was loaded on chitosan nanoparticles and then was prepared by ionic gelation of chitosan with sodium tripolyphosphat (Na-TPP) in various compositions. Characterization of the products were investigated for particle size, zeta potential, and morphology by Scanning Electron Microscophy (SEM). The biological activity of the products as an antioxidant was tested by the DPPH method. Results of this study showed that the nanoparticle can be synthesized at the concentration ratio of 10: 1 for chitosan/Na-TPP. The size were in the range of 172 to 877 nm, with a zeta potential of + 28.06 to + 38.03 mV. The nanoparticle was cylinders in shape and smooth in surfaces. The antioxidant activity of chitosan nanoparticles of chloroform fraction of K. rotunda showed less activity compared with the previous fraction.


2017 ◽  
Vol 9 (2) ◽  
pp. 47
Author(s):  
Rahmawanty D ◽  
Risa A ◽  
Malikhatun N ◽  
Prima HR ◽  
Nani K ◽  
...  

<p>Snakehead fish (<em>Channa striata</em>) has been reported to be used for wound healing by people in South Borneo because it contains albumin. Snakehead fish extract (<em>Channa striata</em>) has hydrophillic property and poor stability. Nanoparticle technology has been started to be developed as an alternative solution to improve drug delivery profile. The purpose of this study was to determine the formulation that obtained best characterization for nanoparticle. Nanoparticles were prepared by ionic gelation method, that was prepared by doing optimize ratio between snakehead fish extract : chitosan and pH of chitosan solvent.Nanoparticles were characterized using Particle Size Analyzer for particle size and particle size distribution, measurement of entrapment efficiency, determined Zeta potential using Particle Size Analyzer, and observation of particle’s morphology using Transmission Electron Microscope. The result showed that the chosen formula was formula 6 which  ratio of extract : chitosan 1:2 with chitosan solvent pH 3, particle size 152.3 nm, polidispersity index 0.778, percentage of entrapment efficiency 51.3961 %, Zeta potential +35.9 mV, and round shape of particles.</p>


2017 ◽  
Vol 5 (4) ◽  
pp. 26-32 ◽  
Author(s):  
Azaria Robiana ◽  
M. Yashin Nahar ◽  
Hamidah Harahap

Glycerin residue is waste oleochemical industry that still contain glycerin. To produce quality and maximum quantity of glycerin, then research the effect of pH acidification using phosphoric acid. Glycerin analysis includes the analysis of pH, Fatty Acid and Ester (FAE), and analysis of the levels of glycerin. The maximum yield obtained at pH acidification 2 is grading 91,60% glycerin and Fatty Acid and Ester (FAE) 3,63 meq/100 g. Glycerin obtained is used as a plasticizer in the manufacture of bioplastics. Manufacture of bioplastics using the method of pouring a solution with varying concentrations of starch banana weevil (5% w/v and 7% w/v), variations of the addition of glycerin (1 ml, 3 ml, 5 ml and 7 ml), and a variety of gelatinization temperature (60°C, 70°C, and 80°C). Analysis of bioplastics include FTIR testing, tensile strength that is supported by SEM analysis. The results obtained in the analysis of FTIR does not form a new cluster on bioplastics starch banana weevil, but only a shift in the recharge area only, it is due to the addition of O-H groups originating from water molecules that enter the polysaccharide through a mechanism gelatinitation that generates interaction hydrogen bonding strengthened. The maximum tensile strength of bioplastics produced at a concentration of starch 7% w/v, 1 ml glycerine and gelatinization temperature of 80°C is 3,430 MPa. While the tensile strength bioplastic decreased with increasing glycerin which can be shown from the results of SEM where there is a crack, indentations and lumps of starch insoluble.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 641-649
Author(s):  
JOSHUA OMAMBALA ◽  
CARL MCINTYRE

The vast majority of tissue production uses creping to achieve the required set of properties on the base sheet. The Yankee coating helps to develop the desired crepe that in turn determines properties such as bulk and softness. The adhesion of the sheet to the Yankee surface is a very important characteristic to consider in achieving the desired crepe. The coating mix usually consists of the adhesive, modifier, and release. A good combination of these components is essential to achieving the desired properties of the tissue or towel, which often are determined by trials on the machine that can be time consuming and lead to costly rejects. In this paper, five compositions of an industrial Yankee coating adhesive, modifier, and release were examined rheologically. The weight ratio of the adhesive was kept constant at 30% in all five compositions and the modifier and release ratios were varied. The normal force and work done by the different compositions have been shown at various temperatures simulating that of the Yankee surface, and the oscillatory test was carried out to explain the linear and nonlinear viscoelastic characteristic of the optimal coating composition.


Author(s):  
Aline Krindges ◽  
Vanusca Dalosto Jahno ◽  
Fernando Morisso

Incorporation studies of particles in different substrates with herbal assets growing. The objective of this work was the preparation and characterization of micro/nanoparticles containing cymbopogon nardus essential oil; and the incorporation of them on bacterial cellulose. For the development of the membranes was used the static culture medium and for the preparation of micro/nanoparticles was used the nanoprecipitation methodology. The incorporation of micro/nanoparticles was performed on samples of bacterial cellulose in wet and dry form. For the characterization of micro/nanoparticles were carried out analysis of SEM, zeta potential and particle size. For the verification of the incorporation of particulate matter in cellulose, analyses were conducted of SEM and FTIR. The results showed that it is possible the production and incorporation of micro/nanoparticles containing essential oil in bacterial cellulose membranes in wet form with ethanol.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 992
Author(s):  
Suchitha Devadas ◽  
Saja M. Nabat Al-Ajrash ◽  
Donald A. Klosterman ◽  
Kenya M. Crosson ◽  
Garry S. Crosson ◽  
...  

Lignin macromolecules are potential precursor materials for producing electrospun nanofibers for composite applications. However, little is known about the effect of lignin type and blend ratios with synthetic polymers. This study analyzed blends of poly(acrylonitrile-co-methyl acrylate) (PAN-MA) with two types of commercially available lignin, low sulfonate (LSL) and alkali, kraft lignin (AL), in DMF solvent. The electrospinning and polymer blend solution conditions were optimized to produce thermally stable, smooth lignin-based nanofibers with total polymer content of up to 20 wt % in solution and a 50/50 blend weight ratio. Microscopy studies revealed that AL blends possess good solubility, miscibility, and dispersibility compared to LSL blends. Despite the lignin content or type, rheological studies demonstrated that PAN-MA concentration in solution dictated the blend’s viscosity. Smooth electrospun nanofibers were fabricated using AL depending upon the total polymer content and blend ratio. AL’s addition to PAN-MA did not affect the glass transition or degradation temperatures of the nanofibers compared to neat PAN-MA. We confirmed the presence of each lignin type within PAN-MA nanofibers through infrared spectroscopy. PAN-MA/AL nanofibers possessed similar morphological and thermal properties as PAN-MA; thus, these lignin-based nanofibers can replace PAN in future applications, including production of carbon fibers and supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document