scholarly journals The Effect of Clay/Multiwall Carbon Nanotube Hybrid Fillers on the Properties of Elastomer Nanocomposites

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Sung Ho Song

The hybrid fillers of 1D multiwalled carbon nanotubes (MWNT) and 2D montmorillonite (MMT) have led to excellent physical and chemical properties in high performance elastomer nanocomposites. In this study, the hybridization of PDDA (polydiallyldimethylammonium chloride) functionalized MWNT (P-MWNT) and hydroxyl-functionalized MMT (H-MMT) was prepared by the electrostatic interaction between the positive charge on the MWNT and the negative charge on the MMT using a simple solution mixing process. Also, a styrene-butadiene rubber (SBR) nanocomposite containing the hybrid nanofillers was prepared to improve the dispersion of nanofillers with SBR latex. The SBR nanocomposites with the hybrid nanofillers exhibited outstanding mechanical properties including modulus, tensile strength, and elongation at break, due to the enhanced interfacial bonding with the elastomer matrix. Furthermore, the hybrid nanofillers in the SBR matrix showed superior thermal and electrical properties and gas barrier performance at low loadings. The synergistic effects of the SBR produced by the hybridized nanofillers will open up new opportunities for elastomer composites with high performance.

Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1045 ◽  
Author(s):  
Sung Song

Hybrid oils in an elastomer matrix provide superior physical and chemical properties over conventional elastomer composites. In this study, we investigated the possibility of utilizing palm-based hybrid oil as a processing oil, with various other added oils such as methylester, palm monoglyceride and dammar, and their effects on the curing characteristics, mechanical, abrasion resistance and heat build-up properties of elastomer composites. The elastomer composites with the hybrid oils exhibit remarkable improvements in mechanical properties such as modulus, tensile strength, elongation and toughness, which were ascribed to the enhanced dispersion of the fillers in the elastomer matrix. Also, the hybrid oils in the elastomer matrix showed outstanding heat build-up, abrasion and rebound resilience properties at low loadings. The synergistic effects in the elastomer matrix achieved by the hybridization of palm oil and other oils represent a significant contribution to advanced, stronger elastomer composites in various applications.


2021 ◽  
pp. 009524432110290
Author(s):  
Leandro Hernán Esposito ◽  
Angel José Marzocca

The potential replacement of a treated residual aromatic extract mineral oil (TRAE) by a highly epoxidized soybean oil (ESO) into a silica-filled styrene-butadiene rubber compound was investigated. In order to determine if ESO compounds performance are suitable for tread tire applications, processing properties cure and characteristics were evaluated. The impact of ESO amount on the silica dispersion was confirmed by Payne Effect. The presence of chemical or physical interactions between ESO and silica improves the filler dispersion, enabling the compound processability and affecting the cure kinetic rate. An adjusted rubber compound with 2 phr of ESO and 2 phr of sulfur presented the higher stiffness and strength values with lower weight loss from a wear test compared with TRAE compound at an equal amount of oil and curing package. Furthermore, wet grip and rolling resistance predictors of both compounds gave comparable results, maintaining a better performance and reducing the dependence of mineral oil for tire tread compounds.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 650 ◽  
Author(s):  
Francisco Cordovilla ◽  
Alejandro Tur ◽  
Ángel García-Beltrán ◽  
Marcos Diaz ◽  
Ignacio Angulo ◽  
...  

Laser welding of dissimilar stainless steels is of interest when mechanical, corrosion, or esthetical requirements impose the use of a high-performance stainless steels, while production-cost requirements prevent using expensive materials in all the parts of a given device. The compromise may lead to the use of the most expensive material in critical areas and the cheapest one in the remaining. Their union can be materialized by laser-pulsed welding. It has intrinsic difficulties derived from the different physical and chemical properties of the steels, and from the need of preserving the protective passive layer. The present work achieves a welded joint with minimum thermal impact by means of laser pulses, capable of preserving the corrosion resistance of the involved stainless steels. The influence of the parameters to define static and dynamic pulses on the material and on the welding regime, keyhole, or heat conduction, is studied. It is used to calculate the overlapping factor of the pulses on the basis of the real dimensions of the melted area. A continuous joint has been built with dynamic pulses. The corrosion resistance of it has been checked showing a similar behavior to the non-heated material. The microstructure of the optimized joint is associated with a reduced HAZ while its mechanical behavior is suitable for its real application.


2021 ◽  
Author(s):  
Jie Hu ◽  
Zhengqing Kong ◽  
Ke Liu ◽  
Jinli Qin ◽  
Yuhong Tao ◽  
...  

Abstract The surface functionalization of CNCs and the construction of strong interfacial adhesion between CNCs and rubber matrix are effective way to achieve high performance rubber/CNCs nanocomposites. Herein, carboxylation of sulphated cellulose nanocrystals (CNC-OSO3H) was conducted in aqueous medium by using citric acid as modifier. Large amount of carboxyl groups was successfully grafted on the surface of CNC-OSO3H, which endows the carboxylated CNC-OSO3H (abbreviate as CNC-CA) with higher chemical reactivity and thermal stability. Subsequently, carboxylated styrene butadiene rubber (XSBR)/CNC-CA nanocomposites with dual crosslinking design were prepared by using polyethylene glycol diglycidyl ether (PEGDE) as the crosslinking agent and CNC-CA as the reinforcing fillers. FTIR investigation found that in the obtained nanocomposites, the carboxyl groups on CNC-CA and XSBR formed hydrogen bonds (physical crosslinking) with each other, and the carboxyl groups formed covalent bond with the epoxy group on PEGDE simultaneously. The coexistence of physical and chemical crosslinking improved the interface compatibility between CNC-CA and XSBR matrix, accelerated the homogenous dispersion of CNC-CA and realized the crosslinking of the matrix itself. As expected, XSBR/CNC-CA nanocomposites with dual crosslinking network showed remarkable enhancement in tensile strength (up to 500%), modulus (up to 151%), work of fracture (up to 348%). This work provides both a facile and green approach to obtain carboxylated CNCs and a convenient method for the preparation of high-performance rubber nanocomposites with multiple interactions.


Author(s):  
Paul С. Uzoma ◽  
Huan Hu ◽  
Mahdi Khadem ◽  
Oleksiy V. Penkov

The exfoliation of graphene has opened a new frontier in material science with a focus on 2D materials. The unique thermal, physical and chemical properties of these materials have made them one of the choicest candidates in novel mechanical and nano-electronic devices. Notably, 2D materials such as graphene, MoS2, WS2, h-BN, and Black Phosphorus have shown outstanding lowest frictional coefficients and wear rates, making them attractive materials for high-performance nano-lubricants and lubricating applications. The objective of this work is to provide a comprehensive overview of the most recent developments in the tribological potentials of 2D materials. At first, the essential physical, wear, and frictional characteristics of the 2D materials including their production techniques are discussed. Subsequently, the experimental explorations and theoretical simulations of the most common 2D materials are reviewed in regards to their tribological applications such as their use as solid lubricants and surface lubricant nano-additives. The effects of micro/nano textures on friction behavior are also reviewed. Finally, the current challenges in tribological applications of 2D materials and their prospects are discussed.


Author(s):  
John Evans

The chemical properties of the volatile elements in groups 15 to 18 are outlined, showing how the the periodicicty of the properties of the elements shapes their chemistry. The manufacture of hydrogen and chlorine is described, showing how mercury-free methods have been developed for the latter. The effect of the formation of atmospheric CO2 on atmospheric oxygen content is explained in terms of dissolution in the oceans. Remediation of the exhaust gases from internal combustion engines by catalysts to remove CO2, NOx and carbonaceous particulates is explained. Options for carbon capture and storage by physical and chemical processes are evaluated, and examples provided of these processes in operation. Exploitation of the atmosphere for energy capture using wind turbines has been aided by the development of high performance magnets. The basis of these magnets and the role of rare earth elements is explained.


Sign in / Sign up

Export Citation Format

Share Document