scholarly journals Sensor-Driven Preliminary Wing Ground Plane Sizing Approach and Applications

2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Ankur S. Patil ◽  
Emily J. Arnold

Structurally integrated antenna arrays provide synergies allowing the integration of large apertures onto airborne platforms. However, the surrounding airframe can greatly impact the performance of the antenna array. This paper presents a sensor-driven preliminary wing ground plane sizing approach to provide insight into the implications of design decisions on payload performance. The improvement of a wing-integrated antenna array that utilizes the wing as a ground plane motivated this study. Relationships for wing span, wing chord, and thickness are derived from extensive parametric electromagnetic simulations based on optimum antenna performance. It is expected that these equations would be used after an initial wing-loading design point has been selected to provide the designer guidance into how various wing parameters might affect the integrated antenna performance.

2015 ◽  
Vol 8 (8) ◽  
pp. 1253-1263 ◽  
Author(s):  
R. Hafezifard ◽  
Jalil Rashed-Mohassel ◽  
Mohammad Naser-Moghadasi ◽  
R. A. Sadeghzadeh

A circularly polarized (CP) and high gain Microstrip antenna is designed in this paper using metamaterial concepts. The antenna, built on a metamaterial substrate, showed significant size reduction and less mutual coupling in an array compared with similar arrays on conventional substrates. Demonstrated to have left-handed magnetic characteristics, the methodology uses complementary split-ring resonators (SRRs) placed horizontally between the patch and the ground plane. In order to reduce mutual coupling in the array structure, hexagonal-SRRs are embedded between antenna elements. The procedure is shown to have great impact on the antenna performance specifically its bandwidth which is broadened from 400 MHz to 1.2 GHz for X-band and as well as its efficiency. The structure has also low loss and improved standing wave ratio and less mutual coupling. The results show that a reduction of 26.6 dB in mutual coupling is obtained between elements at the operation frequency of the array. Experimental data show a reasonably good agreement between simulation and measured results.


Author(s):  
Asghar A. Razzaqi ◽  
Bilal A. Khawaja ◽  
Mehrab Ramzan ◽  
Muhammad Javed Zafar ◽  
Syeda Areeba Nasir ◽  
...  

In this paper, a triple-band 1 × 2 and 1 × 4 microstrip patch antenna array for next-generation wireless and satellite-based applications are presented. The targeted frequency bands are 3.6, 5.2 and 6.7 GHz, respectively. Simple design procedures and optimization techniques are discussed to achieve better antenna performance. The antenna is designed and simulated using Agilent ADS Momentum using FR4 substrate (εr= 4.2 and h = 1.66 mm). The main patch of the antenna is designed for 3.6 GHz operation. A hybrid feed technique is used for antenna arrays with quarter-wave transformer-based network to match the impedance from the feed-point to the antenna to 50 Ω. The antenna is optimized to resonate at triple-bands by using two symmetrical slits. The single-element triple-band antenna is fabricated and characterized, and a comparison between the simulated and measured antenna is presented. The achieved simulated impedance bandwidths/gains for the 1 × 2 array are 1.67%/7.75, 1.06%/7.7, and 1.65%/9.4 dBi and for 1 × 4 array are 1.67%/10.2, 1.45%/8.2, and 1.05%/10 dBi for 3.6, 5.2, and 6.7 GHz bands, respectively, which are very practical. These antenna arrays can also be used for advanced antenna beam-steering systems.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 515
Author(s):  
Meijun Qu ◽  
Siyang Sun ◽  
Huanhuan Jing ◽  
Long Pei

Mounted locations and the ground plane structure have remarkable influences on the performance of roof-mounted automotive antennas. To distinguish this influence in radiation, figure of merits (FoMs), including total radiated power (TRP), near-horizontal part radiated power (NHPRP), and cumulative distribution function (CDF), are studied in this paper. It is proved that TRPs are almost the same with different mounting configurations. Because the radiation toward the horizon is a critical performance metric for automotive antennas, NHPRP is analyzed within certain degrees near the horizon. Even though a bigger deviation has been observed in NHPRP, the discrimination between different mounted scenarios is still not enough. Different from TPR and NHPRP, which are efficiency-based FoMs, CDF combines the gain values and the pattern shape together, achieving a comprehensive and intuitive insight into the antenna performance. It is more predictive and distinguishable in terms of the radiation pattern than NHPRP and TRP. Therefore, CDF can be utilized as a good supplement to existing metrics and can better distinguish the radiation performance of different antenna mounting configurations.


Author(s):  
Ahmed Ghaloua ◽  
Jamal Zbitou ◽  
Larbi El Abdellaoui ◽  
Mohamed Latrach

As the size of the antenna often has a significant influence on overall dimensions of the wireless system, its reduction in size becomes a significant challenge. The objective of this chapter is to present new contributions made for reducing the size of the antenna array while maintaining excellent performance. An overview of the antenna array is introduced. Then, two designed and fabricated antenna arrays with compact size and good performances are exposed. The first microstrip patch antenna array is miniaturized using a novel shape of defected ground structure (DGS) etched in the ground plane of each radiating element of the antenna array. While the second one is two antenna arrays which are separated by two magnetic walls of a planar compact electromagnetic band gap (EBG) structure, with the aim to miniature and to reduce the mutual coupling between them, keeping both the antenna arrays separation smaller than 0.6λ5.8GHz. A full-wave electromagnetic analysis had achieved to evaluate the electrical performances of the proposed structures by using HFSS and CST-MWS.


2017 ◽  
Vol 5 (4) ◽  
pp. 268-273
Author(s):  
D. Rajeswari ◽  
T. Jayanthy

The design of a 4 x 4 Butler Matrix for use in a multi-beam antenna array operating over wide frequency band is presented. In order to achieve wideband characteristics, the matrix uses microstrip-slot technology that employs two microstrip dielectric layers with a common ground plane and a coupling slot. The designed Butler matrix is compact in size and does not use crossovers. Its prototype is manufactured. The performance of the designed device is assessed via full-wave electromagnetic simulations and measurements.


CounterText ◽  
2016 ◽  
Vol 2 (2) ◽  
pp. 217-235
Author(s):  
Gordon Calleja

This paper gives an insight into the design process of a game adaptation of Joy Division's Love Will Tear Us Apart (1980). It outlines the challenges faced in attempting to reconcile the diverging qualities of lyrical poetry and digital games. In so doing, the paper examines the design decisions made in every segment of the game with a particular focus on the tension between the core concerns of the lyrical work being adapted and established tenets of game design.


Author(s):  
Maria Trigka ◽  
Christos Mavrokefalidis ◽  
Kostas Berberidis

AbstractIn the context of this research work, we study the so-called problem of full snapshot reconstruction in hybrid antenna array structures that are utilized in mmWave communication systems. It enables the recovery of the snapshots that would have been obtained if a conventional (non-hybrid) uniform linear antenna array was employed. The problem is considered at the receiver side where the hybrid architecture exploits in a novel way the antenna elements of a uniform linear array. To this end, the recommended scheme is properly designed so as to be applicable to overlapping and non-overlapping architectures. Moreover, the full snapshot recoverability is addressed for two cases, namely for time-varying and constant signal sources. Simulation results are also presented to illustrate the consistency between the theoretically predicted behaviors and the simulated results, and the performance of the proposed scheme in terms angle-of-arrival estimation, when compared to the conventional MUSIC algorithm and a recently proposed hybrid version of MUSIC (H-MUSIC).


2021 ◽  
Vol 11 (5) ◽  
pp. 2382
Author(s):  
Rongguo Song ◽  
Xiaoxiao Chen ◽  
Shaoqiu Jiang ◽  
Zelong Hu ◽  
Tianye Liu ◽  
...  

With the development of 5G, Internet of Things, and smart home technologies, miniaturized and compact multi-antenna systems and multiple-input multiple-output (MIMO) antenna arrays have attracted increasing attention. Reducing the coupling between antenna elements is essential to improving the performance of such MIMO antenna system. In this work, we proposed a graphene-assembled, as an alternative material rather than metal, film-based MIMO antenna array with high isolation for 5G application. The isolation of the antenna element is improved by a graphene assembly film (GAF) frequency selective surface and isolation strip. It is shown that the GAF antenna element operated at 3.5 GHz has the realized gain of 2.87 dBi. The addition of the decoupling structure improves the isolation of the MIMO antenna array to more than 10 dB and corrects the antenna radiation pattern and operating frequency. The isolation between antenna elements with an interval of 0.4λ is above 25 dB. All experimental results show that the GAF antenna and decoupling structure are efficient devices for 5G mobile communication.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 778
Author(s):  
Iftikhar Ahmad ◽  
Houjun Sun ◽  
Umair Rafique ◽  
Zhang Yi

This paper presents a design of a triangular slot-loaded planar rectangular antenna array for wideband millimeter-wave (mm-wave) 5G communication systems. The proposed array realizes an overall size of 35.5 × 14.85 mm2. To excite the array elements, a four-way broadband corporate feeding network was designed and analyzed. The proposed array offered a measured impedance bandwidth in two different frequency ranges, i.e., from 23 to 24.6 GHz and from 26 to 45 GHz. The single-antenna element of the array consists of a rectangular patch radiator with a triangular slot. The partial ground plane was used at the bottom side of the substrate to obtain a wide impedance bandwidth. The peak gain in the proposed array is ≈12 dBi with a radiation efficiency of >90%. Furthermore, the array gives a half-power beamwidth (HPBW) of as low as 12.5°. The proposed array has been fabricated and measured, and it has been observed that the measured results are in agreement with the simulated data.


Sign in / Sign up

Export Citation Format

Share Document