scholarly journals The Effect of Pulsatile Flow on bMSC-Derived Endothelial-Like Cells in a Small-Sized Artificial Vessel Made by 3-Dimensional Bioprinting

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Kang Woog Lee ◽  
Dae-Hyun Kim ◽  
Jun Hee Lee ◽  
Young-Nam Youn

Replacement of small-sized vessels is still challenging. This study is aimed at investigating the possibility of small-sized artificial vessels made by 3-dimensional bioprinting and the effect of pulsatile flow on bMSC-derived endothelial-like cells. Cells were harvested from rabbit bone marrow and primary cultured with or without growth factors. Endothelial differentiation was confirmed by the Matrigel tube formation assay, Western blot, and qRT-PCR. In addition, embedment of endothelial-like cells in an artificial vessel was made by 3-dimensional bioprinting, and the pulsatile flow was performed. For pumped and nonpumped groups, qRT-PCR was performed on CD31 and VE-cadherin gene expression. Endothelial-like cells showed increased gene expression of CD31 and VE-cadherin, and tube formation is observed at each week. Endothelial-like cells grow well in a small-sized artificial vessel made by 3-dimensional bioprinting and even express higher endothelial cell markers when they undergo pulsatile flow condition. Moreover, the pulsatile flow condition gives a positive effect for cell observation not only on the sodium alginate hydrogel layer but also on the luminal surface of the artificial vessel wall. We have developed an artificial vessel, which is a mixture of cells and carriers using a 3-dimensional bioprinting method, and applied pulsatile flow using a peristaltic pump, and we also demonstrated cell growth and differentiation into endothelial cells. This study suggests guidelines regarding a small-sized artificial vessel in the field of tissue engineering.

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 621
Author(s):  
Maria Grazia Muoio ◽  
Marianna Talia ◽  
Rosamaria Lappano ◽  
Andrew H. Sims ◽  
Veronica Vella ◽  
...  

Background: Breast cancer (BC) mortality is increased among obese and diabetic patients. Both obesity and diabetes are associated with dysregulation of both the IGF-1R and the RAGE (Receptor for Advanced Glycation End Products) pathways, which contribute to complications of these disorders. The alarmin S100A7, signaling through the receptor RAGE, prompts angiogenesis, inflammation, and BC progression. Methods: We performed bioinformatic analysis of BC gene expression datasets from published studies. We then used Estrogen Receptor (ER)-positive BC cells, CRISPR-mediated IGF-1R KO BC cells, and isogenic S100A7-transduced BC cells to investigate the role of IGF-1/IGF-1R in the regulation of S100A7 expression and tumor angiogenesis. To this aim, we also used gene silencing and pharmacological inhibitors, and we performed gene expression and promoter studies, western blotting analysis, ChIP and ELISA assays, endothelial cell proliferation and tube formation assay. Results: S100A7 expression correlates with worse prognostic outcomes in human BCs. In BC cells, the IGF-1/IGF-1R signaling engages STAT3 activation and its recruitment to the S100A7 promoter toward S100A7 increase. In human vascular endothelial cells, S100A7 activates RAGE signaling and prompts angiogenic effects. Conclusions: In ER-positive BCs the IGF-1 dependent activation of the S100A7/RAGE signaling in adjacent endothelial cells may serve as a previously unidentified angiocrine effector. Targeting S100A7 may pave the way for a better control of BC, particularly in conditions of unopposed activation of the IGF-1/IGF-1R axis.


2021 ◽  
Vol 11 (5) ◽  
pp. 2272
Author(s):  
Mansour Haddad

Background: Adenosine plays the role of regulating cell differentiation, proliferation, and apoptosis in various kinds of cells through the B-cell lymphoma 2 (BCL2) pathway. Objectives: Since anti-apoptotic (BCL2) expression plays a role in controlling apoptosis in some cell lines, this study was designed to investigate whether adenosine analogue, NECA (non-selective adenosine receptors agonist), selective adenosine A2B receptor antagonist, PSB 603, and a selective adenosine A2A receptor agonist, CG21680, affect BCL2-gene expression in the skeletal muscle cells of rats. The purpose of this investigation was to test the hypothesis that CG21680 treatment would significantly intensify BCL2 gene expression in rat skeletal muscle. Methods: Flasks measuring 25 cm2 were employed in culturing the rat L6 skeletal muscle cells. After treating these differential cells, the relative mRNA expression level for the BCL2 gene, at varying conditions of treatment, was measured using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results: From the qRT-PCR analysis results, it was concluded that BCL2 expression was markedly amplified after selective adenosine A2A receptor agonist, CGS21680 (p < 0.01) treatment. More prospective validation for the adenosine receptors’ contribution in modulating apoptosis by NECA was delivered by the outcomes from the combined pre-treatment of the cells with NECA and PSB 603. These outcomes show that when starved skeletal muscle cells are treated with a combination of NECA and 100 nM PSB 603, there was a substantial decrease in comparison to either treatment used on its own. Conclusions: This study’s results showed, for the first time, an increase in BCL2 gene expression within skeletal muscle after CGS21680 treatment. Hence, the prospective escalation in BCL2 protein expression might have a protective role to play against apoptosis and avert damage to the skeletal muscle.


2007 ◽  
Vol 19 (02) ◽  
pp. 71-78 ◽  
Author(s):  
Cheng-Long Chuang ◽  
Chung-Ming Chen ◽  
Grace S. Shieh ◽  
Joe-Air Jiang

A neuro-fuzzy inference system that recognizes the expression patterns of genes in microarray gene expression (MGE) data, called GeneCFE-ANFIS, is proposed to infer gene interactions. In this study, three primary features are utilized to extract genes' expression patterns and used as inputs to the neuro-fuzzy inference system. The proposed algorithm learns expression patterns from the known genetic interactions, such as the interactions confirmed by qRT-PCR experiments or collected through text-mining technique by surveying previously published literatures, and then predicts other gene interactions according to the learned patterns. The proposed neuro-fuzzy inference system was applied to a public yeast MGE dataset. Two simulations were conducted and checked against 112 pairs of qRT-PCR confirmed gene interactions and 77 TFs (Transcriptional Factors) pairs collected from literature respectively to evaluate the performance of the proposed algorithm.


2010 ◽  
Vol 45 (11) ◽  
pp. 2129-2135 ◽  
Author(s):  
Hajime Takayasu ◽  
Paula Murphy ◽  
Hideaki Sato ◽  
Takashi Doi ◽  
Prem Puri

2012 ◽  
Vol 40 (4) ◽  
pp. 3395-3407 ◽  
Author(s):  
M. Fernández-Aparicio ◽  
K. Huang ◽  
E. K. Wafula ◽  
L. A. Honaas ◽  
N. J. Wickett ◽  
...  

Author(s):  
S C M Yu ◽  
J B Zhao

Flow characteristics in straight tubes with an asymmetric bulge have been investigated using particle image velocimetry (PIV) over a range of Reynolds numbers from 600 to 1200 and at a Womersley number of 22. A mixture of glycerine and water (approximately 40:60 by volume) was used as the working fluid. The study was carried out because of their relevance in some aspects of physiological flows, such as arterial flow through a sidewall aneurysm. Results for both steady and pulsatile flow conditions were obtained. It was found that at a steady flow condition, a weak recirculating vortex formed inside the bulge. The recirculation became stronger at higher Reynolds numbers but weaker at larger bulge sizes. The centre of the vortex was located close to the distal neck. At pulsatile flow conditions, the vortex appeared and disappeared at different phases of the cycle, and the sequence was only punctuated by strong forward flow behaviour (near the peak flow condition). In particular, strong flow interactions between the parent tube and the bulge were observed during the deceleration phase. Stents and springs were used to dampen the flow movement inside the bulge. It was found that the recirculation vortex could be eliminated completely in steady flow conditions using both devices. However, under pulsatile flow conditions, flow velocities inside the bulge could not be suppressed completely by both devices, but could be reduced by more than 80 per cent.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S726-S726
Author(s):  
April Nguyen ◽  
Vinathi Polamraju ◽  
Truc T Tran ◽  
Diana Panesso-Botero ◽  
Ayesha Khan ◽  
...  

Abstract Background Daptomycin (DAP) is a lipopeptide antibiotic targeting membrane anionic phospholipids (APLs) at the division septum, and resistance (DAP-R) has been linked to mutations in genes encoding i) the LiaFSR stress response system or its effector LiaX, and ii) cardiolipin synthase (Cls). Activation of the E. faecalis (Efs) LiaFSR response is associated with DAP-R and redistribution of APL microdomains away from the septum, and cardiolipin is predicted to be a major component of these APL microdomains. Efs harbors two putative cls genes, cls1 and cls2. While changes in Cls1 have been implicated in DAP-R, the exact roles of each enzyme in resistance are unknown. We aim to characterize the contributions of Cls1 and Cls2 in the development of DAP-R. Methods cls1 and cls2 were deleted individually and in tandem from DAP-S Efs OG117 and DAP-R Efs OG117∆liaX (a DAP-R derivative strain with an activated LiaFSR response). Mutants were characterized by DAP minimum inhibitory concentration (MIC) using E-test on Mueller-Hinton II agar and localization of APL microdomains with 10-N-nonyl-acridine orange staining. Quantitative PCR (qRT-PCR) was used to study gene expression profiles of cls1 and cls2 in Efs OG117∆liaX relative to Efs OG117 across the cell growth cycle. Results qRT-PCR revealed differential expression profiles of cls1 and cls2 associated with DAP-R. cls1 was highly upregulated in stationary phase concurrent with a decrease in cls2 expression. However, independent deletion of cls1 or cls2 in the DAP-R background resulted in no significant changes in DAP MICs or localization of APL microdomains (remaining non-septal). Further studies revealed that cls2 expression is upregulated upon deletion of cls1 in both the DAP-S and DAP-R background, suggesting a potential compensatory role for Cls2. Double deletion of both cls genes in the DAP-R strain decreased DAP MIC and restored the septal localization of APL microdomains. Conclusion Cls1 is the major and predominant enzyme involved in cell membrane adaptation associated with the development of DAP-R in E. faecalis. However, we describe a novel compensatory and overlapping role for cardiolipin synthases to ensure bacterial survival upon attack from antimicrobial peptides and related antibiotics. Disclosures Cesar A. Arias, MD, MSc, PhD, FIDSA, Entasis Therapeutics (Scientific Research Study Investigator)MeMed (Scientific Research Study Investigator)Merck (Grant/Research Support)


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
M C Carbajo-García ◽  
A Corachán ◽  
M Segura ◽  
J Monleón ◽  
J Escrig ◽  
...  

Abstract Study question Is DNA methylation reversion through DNA methyltransferases (DNMT) inhibitors, such as 5-aza–2’-deoxycitidine, a potential therapeutic option for treatment of patients with uterine leiomyomas (UL)? Summary answer 5-aza–2’-deoxycitidine reduces proliferation and extracellular matrix (ECM) formation by inhibition of Wnt/ β-catenin pathway on UL cells, suggesting DNMT inhibitors as an option to treat UL. What is known already: UL is a multifactorial disease with an unclear pathogenesis and inaccurate treatment. Aberrant DNA methylation have been found in UL compared to myometrium (MM) tissue, showing hypermethylation of tumor suppressor genes, which contributes to the development of this tumor. The use of DNMT inhibitors, such as 5-aza–2’-deoxycytidine (5-aza-CdR), has been suggested to treat tumors in which altered methylation pattern is related to tumor progression, as occurs in UL. Based on this, we aimed to evaluate whether DNA methylation reversion through 5-aza-CdR reduces cell proliferation and ECM formation in UL cells, being a potential option for UL medical treatment. Study design, size, duration Prospective study comparing UL versus MM tissue and human uterine leiomyoma primary (HULP) cells treated with/without 5-aza-CdR at 0 µM (control), 2 µM, 5 µM and 10 µM for 72 hours. UL and MM tissue were collected from women without any hormonal treatment for the last 3 months (n = 16) undergoing myomectomy or hysterectomy due to symptomatic leiomyoma pathology. Participants were recruited between January 2019 and February 2020 at Hospital Universitario y Politecnico La Fe (Spain). Participants/materials, setting, methods Samples were collected from Caucasian premenopausal women aged 31–48 years, with a body mass index of &lt; 30 and without hormonal treatment. DNMT1 gene expression was analysed in UL vs MM tissue by qRT-PCR and activity of DNMT was measured in UL and MM tissue and cells by ELISA. 5-aza-CdR effect on proliferation was assessed by CellTiter test and Western blot (WB), apoptosis and ECM analyzed by WB and Wnt/ β-catenin pathway by qRT-PCR and WB. Main results and the role of chance: DNMT1 gene expression was increased in UL compared to MM tissue (fold change [FC]=2.49, p-value [p]=0.0295). Similarly, DNMT activity was increased in both UL compared to MM tissue and HULP cells versus MM cells (6.50 vs 3.76 OD/h/mg, p = 0.026; 211.30 vs 63.67 OD/h/mg, p = 0.284, respectively). After 5-aza-CdR treatment, cell viability of HULP cells was reduced in a dose dependent manner, being statistically significant at 10 µM (85.25%, p = 0.0001). Accordantly, PCNA protein expression was significantly decreased at 10 µM in HULP cells (FC = 0.695, p = 0.034), demonstrating cell proliferation inhibition. Additionally, 5-aza-CdR inhibited ECM protein expression in HULP cells in a dose-dependent manner being statistically significant at 10 µM for COLLAGEN I (FC = 0.654, p = 0.023) and PAI–1 (FC = 0.654, p = 0.023), and at 2 µM and 10 µM for FIBRONECTIN (FC = 0.812, p = 0.020; FC = 0.733, p = 0.035; respectively). Final targets of Wnt/ β-catenin pathway were decreased after 5-aza-CdR treatment, protein expression of WISP1 was significantly inhibited at 10 µM (FC = 0.699, p = 0.026), while expression levels of Wnt/ β-catenin target genes C-MYC (FC = 0.745, p = 0.028 at 2 µM; FC = 0.728, p = 0.019 at 10 µM) and MMP7 (FC = 0.520, p = 0.003 at 5 µM, FC = 0.577, p = 0.007 at 10 µM) were also significantly downregulated in HULP-treated cells vs untreated cells. Limitations, reasons for caution: This study has strict inclusion criteria to diminish epigenetic variability, thereby we should be cautious extrapolating our results to general population. Besides, this is a proof of concept with the inherent cell culture limitations. Further studies are necessary to determine 5-aza-CdR dose and adverse effects on UL in vivo. Wider implications of the findings: 5-aza-CdR treatment reduces cell proliferation and ECM formation through Wnt/ β-catenin pathway inhibition, suggesting that inhibition of DNA methylation could be a promising new therapeutic approach to treat UL. Trial registration number Not applicable


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Min Li ◽  
Kurt Stenmark ◽  
Robin Shandas ◽  
Wei Tan

Background: Due to the development of pulmonary arterial hypertension (PAH), distal pulmonary artery endothelial cells (dPAEC) are exposed to wall shear stress (SS) that is different in physical characteristics compared to normal condition. The effect of individual components of SS on PAEC biology has not been thoroughly examined. Thus the current study was designed to examine how dPAEC respond to different component of SS in regarding to gene expression including adhesion molecules: ICAM, VCAM, E-selectin; chemokine: MCP-1 and growth factors:VEGF, Flt-1. Methods: Bovine dPAEC were cultured and placed on fibronectin-coated slides till confluent. Cells were then exposed to SS with different frequency (1Hz, 2Hz), pulsation (low, medium and high with an average SS of 14 dynes/cm 2 ) and time (1hr or 6hrs). The flow studies were carried out using a flow chamber connected to a variable speed flow pump. All data was represented as fold change relative to static condition. Results: As shown in table below, The effect of flow frequency on gene expression depends on individual gene. There was no difference of ICAM expression between 1Hz and 2Hz. Frequency of 2Hz significantly increased VCAM and MCP-1 expression compared to frequency of 1Hz. Compared to static condition, steady flow increased all gene expression. One hour pulsatile flow further increased ICAM, VCAM, E-selectin and MCP-1 but not VEGF or Flt-1 expression as pulsation increased. 3) Prolonged pulsatile flow further increased all gene expression. Conclusion: Physical characteristics of flow, especially flow pulsation stimulate dPAEC gene expression which can contribute to the development of PAH.


Sign in / Sign up

Export Citation Format

Share Document