scholarly journals Ethyl Vanillin Protects against Kidney Injury in Diabetic Nephropathy by Inhibiting Oxidative Stress and Apoptosis

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yuna Tong ◽  
Shan Liu ◽  
Rong Gong ◽  
Lei Zhong ◽  
Xingmei Duan ◽  
...  

Diabetes-induced oxidative stress and apoptosis is regarded as a critical role in the pathogenesis of diabetic nephropathy (DN). Treating diabetes-induced kidney damage and renal dysfunction has been thought a promising therapeutic option to attenuate the development and progression of DN. In this study, we investigated the renoprotective effect of ethyl vanillin (EVA), an active analogue of vanillin isolated from vanilla beans, on streptozotocin- (STZ-) induced rat renal injury model and high glucose-induced NRK-52E cell model. The EVA treatment could strongly improve the deterioration of renal function and kidney cell apoptosis in vivo and in vitro. Moreover, treating with EVA significantly decreased the level of MDA and reactive oxygen species (ROS) and stabilized antioxidant enzyme system in response to oxidative stress by enhancing the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in vivo and in vitro. Furthermore, EVA also markedly suppressed cleaved caspase-3, Bax, and nuclear transcription factor erythroid 2-related factor (Nrf2) expression in STZ-induced rats. Therefore, these results of our investigation provided that EVA might protect against kidney injury in DN by inhibiting oxidative stress and cell apoptosis.

2017 ◽  
Vol 45 (07) ◽  
pp. 1441-1457 ◽  
Author(s):  
Lin An ◽  
Mei Zhou ◽  
Faiz M. M. T. Marikar ◽  
Xue-Wen Hu ◽  
Qiu-Yun Miao ◽  
...  

Diabetic nephropathy (DN) is a common cause of chronic kidney disease and end-stage renal disease, which can be triggered by oxidative stress. In this study, we investigated the renoprotective effect of the ethyl acetate extract of Salvia miltiorrhiza (EASM) on DN and examined the underlying molecular mechanism. We observed that EASM treatment attenuated metabolic abnormalities associated with hyperglycemic conditions in the experimental DN model. In streptozotocin (STZ)-induced mice, EASM treatment reduced albuminuria, improved renal function and alleviated the pathological alterations within the glomerulus. To mimic the hyperglycemic conditions in DN patients, we used high glucose (25[Formula: see text]mmol/L) media to stimulate mouse mesangial cells (MMCs), and EASM inhibited high glucose-induced reactive oxygen species. We also observed that EASM enhanced the expression of nuclear factor erythroid-2-related factor 2 (Nrf2), which mediated the anti-oxidant response, and its downstream gene heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1) with concomitant decrease of expression of kelch-like ECH-associated protein 1 (keap1) both in vitro and in vivo. Taken together, these results suggest that EASM alleviates the progression of DN and this might be associated with activation of Nrf2.


2018 ◽  
Vol 50 (3) ◽  
pp. 841-850 ◽  
Author(s):  
Hang Sun ◽  
Huihai Yang ◽  
Haonan Ruan ◽  
Wei Li ◽  
Xinhong He ◽  
...  

Background/Aims: Sika deer (Cervus nippon Temminck) antler is traditional animal medicine of renal protection in East Asia. This study measured the effect of sika deer antler protein (SDAPR) on gentamicin (GM)-induced cytotoxicity in HEK293 cells, and investigated the effect of SDAPR against GM-induced nephrotoxicity in mice. Methods: HEK293 cells viability and oxidative stress were measured in HEK293 cells while flow cytometry was used for apoptosis analysis. The acute kidney injury biomarkers, kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL) and cystatin c (Cys-C), were repeatedly measured by ELISA assay. ICR male mice were randomly assigned six groups: Control, GM with vehicle, single SDAPR, GM with SDAPR at three concentrations 50, 100, 200 mg/kg/d, p.o., 10 d. GM was injected for 8 consecutive days (100 mg/kg/d, i.p.). Renal function, oxidative stress and levels of inflammatory factors were measured in vivo. Renal tissues were stained with H&E to observe pathological changes. Results: Pretreatment with SDAPR (0.5-4.0 mg/mL) significantly improved cell viability. Treatment with SDAPR could reduce KIM-1, NGAL and Cys-C activity. SDAPR could improve antioxidant defense and attenuated apoptosis on HEK293 cells. SDAPR also ameliorated GM-induced histopathologic changes, and decreased blood urea nitrogen (BUN) and serum creatinine (Cr). Additionally, SDAPR significantly regulated oxidative stress marker and interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) inflammatory cytokines. Conclusion: These results show that SDAPR could be an effective dietary supplement to relieve GM-induced nephrotoxicity by improved antioxidase activity, suppressed inflammation, and inhibited apoptosis in vitro and vivo.


Endocrinology ◽  
2003 ◽  
Vol 144 (3) ◽  
pp. 839-849 ◽  
Author(s):  
Buffy S. Ellsworth ◽  
Brett R. White ◽  
Ann T. Burns ◽  
Brian D. Cherrington ◽  
Annette M. Otis ◽  
...  

Reproductive function is dependent on the interaction between GnRH and its cognate receptor found on gonadotrope cells of the anterior pituitary gland. GnRH activation of the GnRH receptor (GnRHR) is a potent stimulus for increased expression of multiple genes including the gene encoding the GnRHR itself. Thus, homologous regulation of the GnRHR is an important mechanism underlying gonadotrope sensitivity to GnRH. Previously, we have found that GnRH induction of GnRHR gene expression in αT3-1 cells is partially mediated by protein kinase C activation of a canonical activator protein-1 (AP-1) element. In contrast, protein kinase A and a cAMP response element-like element have been implicated in mediating the GnRH response of the GnRHR gene using a heterologous cell model (GGH3). Herein we find that selective removal of the canonical AP-1 site leads to a loss of GnRH regulation of the GnRHR promoter in transgenic mice. Thus, an intact AP-1 element is necessary for GnRH responsiveness of the GnRHR gene both in vitro and in vivo. Based on in vitro analyses, GnRH appeared to enhance the interaction of JunD, FosB, and c-Fos at the GnRHR AP-1 element. Although enhanced binding of cFos reflected an increase in gene expression, GnRH appeared to regulate both FosB and JunD at a posttranslational level. Neither overexpression of a constitutively active Raf-kinase nor pharmacological blockade of GnRH-induced ERK activation eliminated the GnRH response of the GnRHR promoter. GnRH responsiveness was, however, lost in αT3-1 cells that stably express a dominant-negative c-Jun N-terminal kinase (JNK) kinase, suggesting a critical role for JNK in mediating GnRH regulation of the GnRHR gene. Consistent with this possibility, we find that the ability of forskolin and membrane-permeable forms of cAMP to inhibit the GnRH response of the GnRHR promoter is associated with a loss of both JNK activation and GnRH-mediated recruitment of the primary AP-1-binding components.


2021 ◽  
Vol 22 (19) ◽  
pp. 10822
Author(s):  
Agata Winiarska ◽  
Monika Knysak ◽  
Katarzyna Nabrdalik ◽  
Janusz Gumprecht ◽  
Tomasz Stompór

The incidence of type 2 diabetes (T2D) has been increasing worldwide, and diabetic kidney disease (DKD) remains one of the leading long-term complications of T2D. Several lines of evidence indicate that glucose-lowering agents prevent the onset and progression of DKD in its early stages but are of limited efficacy in later stages of DKD. However, sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor (GLP-1R) antagonists were shown to exert nephroprotective effects in patients with established DKD, i.e., those who had a reduced glomerular filtration rate. These effects cannot be solely attributed to the improved metabolic control of diabetes. In our review, we attempted to discuss the interactions of both groups of agents with inflammation and oxidative stress—the key pathways contributing to organ damage in the course of diabetes. SGLT2i and GLP-1R antagonists attenuate inflammation and oxidative stress in experimental in vitro and in vivo models of DKD in several ways. In addition, we have described experiments showing the same protective mechanisms as found in DKD in non-diabetic kidney injury models as well as in some tissues and organs other than the kidney. The interaction between both drug groups, inflammation and oxidative stress appears to have a universal mechanism of organ protection in diabetes and other diseases.


2019 ◽  
Vol 317 (4) ◽  
pp. F881-F889 ◽  
Author(s):  
Hyung Jung Oh ◽  
Hyewon Oh ◽  
Bo Young Nam ◽  
Je Sung You ◽  
Dong-Ryeol Ryu ◽  
...  

As oxidative stress is one major factor behind contrast-associated acute kidney injury (CA-AKI), we investigated the protective effect of klotho against CA-AKI via the antioxidative effect. In in vitro experiments, cells (NRK-52E) were divided into the following three groups: control, iopamidol, or iopamidol + recombinant klotho (rKL) groups. Moreover, cell viability was measured with the Cell Counting Kit-8 assay, and oxidative stress was examined with 2',7'-dichlorodihydrofluorescein diacetate fluorescence intensity. RT-PCR and Western blot analysis were performed to assess propidium iodide klotho expression, and Bax-to-Bcl-2 and apoptosis ratios were evaluated with annexin V/Hoechst 33342 staining. Furthermore, we knocked down the klotho gene using siRNA to verify the endogenous effect of klotho. In our in vivo experiments, oxidative stress was evaluated with the thiobarbituric acid-reactive substance assay, and apoptosis was evaluated with the Bax-to-Bcl-2 ratio and cleaved caspase-3 immunohistochemistry. Additionally, cell and tissue morphology were investigated with transmission electron microscopy. In both in vitro and in vivo experiments, mRNA and protein expression of klotho significantly decreased in CA-AKI mice compared with control mice, whereas oxidative stress and apoptosis markers were significantly increased in CA-AKI mice. However, rKL supplementation mitigated the elevated apoptotic markers and oxidative stress in the CA-AKI mouse model and improved cell viability. In contrast, oxidative stress and apoptotic markers were more aggravated when the klotho gene was knocked down. Moreover, we found more cytoplasmic vacuoles in the CA-AKI mouse model using transmission electron microscopy but fewer cytoplasmic vacuoles in rKL-supplemented cells. The present study shows that klotho in proximal tubular cells can protect against CA-AKI via an antioxidative effect.


2020 ◽  
Vol 11 ◽  
Author(s):  
Mei-Zhou Huang ◽  
Zhen-Dong Zhang ◽  
Ya-Jun Yang ◽  
Xi-Wang Liu ◽  
Zhe Qin ◽  
...  

Aspirin eugenol ester (AEE) is a new potential pharmaceutical compound possessing anti-inflammatory, anti-cardiovascular disease, and antioxidative stress activity. The pharmacological activities of AEE are partly dependent on its regulation of cell apoptosis. However, it is still unclear how AEE inhibits cell apoptosis on the basis of its antioxidative stress effect. This study aimed to reveal the vascular antioxidative mechanism of AEE in response to H2O2-induced oxidative stress in HUVECs and paraquat-induced oxidative stress in rats. In the different intervention groups of HUVECs and rats, the expression of ASK1, ERK1/2, SAPK/JNK, and p38 and the phosphorylation levels of ERK1/2, SAPK/JNK, and p38 were measured. The effects of ASK1 and ERK1/2 on the anti-apoptotic activity of AEE in the oxidative stress model were probed using the corresponding inhibitors ASK1 and ERK1/2. The results showed that in the HUVECs, 200 μM H2O2 treatment significantly increased the phosphorylation of SAPK/JNK and the level of ASK1 but decreased the phosphorylation of ERK1/2, while in the HUVECs pretreated with AEE, the H2O2-induced changes were significantly ameliorated. The findings were observed in vitro and in vivo. Moreover, inhibition of ASK1 and ERK1/2 showed that ASK1 plays a vital role in the protective effect of AEE on H2O2-induced apoptosis. All findings suggested that AEE protects the vascular endothelium from oxidative injury by mediating the ASK1 pathway.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Minghua Zhang ◽  
Liang Feng ◽  
Junfei Gu ◽  
Liang Ma ◽  
Dong Qin ◽  
...  

Oxidative stress (OS) has been regarded as one of the major pathogeneses of diabetic nephropathy (DN) through damaging kidney which is associated with renal cells dysfunction. The aim of this study was to investigate whether Moutan Cortex (MC) could protect kidney function against oxidative stressin vitroorin vivo. The compounds in MC extract were analyzed by HPLC-ESI-MS. High-glucose-fat diet and STZ (30 mg kg−1) were used to induce DN rats model, while 200 μg mL−1AGEs were for HBZY-1 mesangial cell damage. The treatment with MC could significantly increase the activity of SOD, glutathione peroxidase (GSH-PX), and catalase (CAT). However, lipid peroxidation malondialdehyde (MDA) was reduced markedlyin vitroorin vivo. Furthermore, MC decreased markedly the levels of blood glucose, serum creatinine, and urine protein in DN rats. Immunohistochemical assay showed that MC downregulated significantly transforming growth factor beta 2 (TGF-β2) protein expression in renal tissue. Our data provided evidence to support this fact that MC attenuated OS in AGEs-induced mesangial cell dysfunction and also in high-glucose-fat diet and STZ-induced DN rats.


2021 ◽  
Author(s):  
Wenjuan Jiang ◽  
Jiahui Dong ◽  
Changlin Du ◽  
Chuanting Xu ◽  
Songbing Xu ◽  
...  

Abstract Aristolochic acid nephropathy (AAN) is a progressive kidney disease caused by some herbal medicines, but treatment remains ineffective. We previously found NADPH oxidases 4 (NOX4), which regulates oxidative stress, play an important role in kidney injury model. However, its regulatory mechanism of action in AAN is still obscure. In this study, we established AAN model in vivo, a co-culture system of macrophage and TEC, and macrophage/TEC conditioned media culture model in vitro respectively. We found macrophages infiltration promoted injury,oxidative stress and apoptosis of TEC. Furthermore, the role of macrophage in AAN was dependent on macrophages-derived EV. Importantly, we found that macrophages-derived, Leucine-rich α-2-glycoprotein 1(LRG1)-enriched EV induced TEC injury and apoptosis of via a TGFβR1-dependent process. Mechanistically, macrophages-derived, LRG1-enriched EV mediating TECs injury by upregulating NOX4 in AAN model. This study may help design a better therapeutic strategy to treat AAN patients.


2021 ◽  
Vol 22 (19) ◽  
pp. 10247
Author(s):  
Hao-Yu Chuang ◽  
Li-Yun Hsu ◽  
Chih-Ming Pan ◽  
Narpati Wesa Pikatan ◽  
Vijesh Kumar Yadav ◽  
...  

Background: Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. It is highly resistant to chemotherapy, and tumor recurrence is common. Neuronal precursor cell-expressed developmentally downregulated 4-1 (NEDD4-1) is an E3 ligase that controls embryonic development and animal growth. NEDD4-1 regulates the tumor suppressor phosphatase and tensin homolog (PTEN), one of the major regulators of the PI3K/AKT/mTOR signaling axis, as well as the response to oxidative stress. Methods: The expression levels of NEDD4-1 in GBM tissues and different cell lines were determined by quantitative real-time polymerase chain reaction and immunohistochemistry. In vitro and in vivo assays were performed to explore the biological effects of NEDD4-1 on GBM cells. Temozolomide (TMZ)-resistant U87MG and U251 cell lines were specifically established to determine NEDD4-1 upregulation and its effects on the tumorigenicity of GBM cells. Subsequently, miRNA expression in TMZ-resistant cell lines was investigated to determine the dysregulated miRNA underlying the overexpression of NEDD4-1. Indole-3-carbinol (I3C) was used to inhibit NEDD4-1 activity, and its effect on chemoresistance to TMZ was verified. Results: NEDD4-1 was significantly overexpressed in the GBM and TMZ-resistant cells and clinical samples. NEDD4-1 was demonstrated to be a key oncoprotein associated with TMZ resistance, inducing oncogenicity and tumorigenesis of TMZ-resistant GBM cells compared with TMZ-responsive cells. Mechanistically, TMZ-resistant cells exhibited dysregulated expression of miR-3129-5p and miR-199b-3p, resulting in the induced NEDD4-1 mRNA-expression level. The upregulation of NEDD4-1 attenuated PTEN expression and promoted the AKT/NRF2/HO-1 oxidative stress signaling axis, which in turn conferred amplified defense against reactive oxygen species (ROS) and eventually higher resistance against TMZ treatment. The combination treatment of I3C, a known inhibitor of NEDD4-1, with TMZ resulted in a synergistic effect and re-sensitized TMZ-resistant tumor cells both in vitro and in vivo. Conclusions: These findings demonstrate the critical role of NEDD4-1 in regulating the redox imbalance in TMZ-resistant GBM cells via the degradation of PTEN and the upregulation of the AKT/NRF2/HO-1 signaling pathway. Targeting this regulatory axis may help eliminate TMZ-resistant glioblastoma.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jing Wang ◽  
Wei Zhang ◽  
Sixin Wang ◽  
Yamin Wang ◽  
Xu Chu ◽  
...  

Probiotics are widely used for protection against stress-induced intestinal dysfunction. Oxidative stress plays a critical role in gastrointestinal disorders. It is established that probiotics alleviate oxidative stress; however, the mechanism of action has not been elucidated. We developed an in vitro intestinal porcine epithelial cells (IPEC-J2) model of oxidative stress to explore the antioxidant effect and potential mode of action of Lactobacillus plantarum ZLP001. The IPEC-J2 cells were preincubated with and without L. plantarum ZLP001 for 3 h and then exposed to hydrogen peroxide (H2O2) for 4 h. Pretreatment with L. plantarum ZLP001 protected IPEC-J2 cells against H2O2-induced oxidative damage as indicated by cell viability assays and significantly alleviated apoptosis elicited by H2O2. L. plantarum ZLP001 pretreatment decreased reactive oxygen species production and the cellular malondialdehyde concentration and increased the mitochondrial membrane potential compared with H2O2 treatment alone, suggesting that L. plantarum ZLP001 promotes the maintenance of redox homeostasis in the cells. Furthermore, L. plantarum ZLP001 regulated the expression and generation of some antioxidant enzymes, thereby activating the antioxidant defense system. Treatment with L. plantarum ZLP001 led to nuclear erythroid 2-related factor 2 (Nrf2) enrichment in the nucleus compared with H2O2 treatment alone. Knockdown of Nrf2 significantly weakened the alleviating effect of L. plantarum ZLP001 on antioxidant stress in IPEC-J2 cells, suggesting that Nrf2 is involved in the antioxidative effect of L. plantarum ZLP001. Collectively, these results indicate that L. plantarum ZLP001 is a promising probiotic bacterium that can potentially alleviate oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document