scholarly journals Quantitative Characteristics of Toxic Compounds According to the Solvent Type

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Young-Ji An ◽  
Seong-Jin Choi ◽  
Yong-Hyun Kim ◽  
Kyuhong Lee

The quantitative analysis of target substances is an important part of assessing the toxicity of diverse materials. Usually, the quantitation of target compounds is conducted by instrumental analysis such as chromatography and capillary electrophoresis. If solvents are used in the pretreatment step of the target analyte quantification, it would be crucial to examine the solvent effect on the quantitative analysis. Therefore, in this study, we assessed the solvent effects using four different solvents (methanol, hexane, phosphate buffered saline (PBS), and dimethyl sulfoxide (DMSO)) and three toxic compounds (benzene, toluene, and methylisothiazolinone (MIT)). Liquid working standards containing the toxic compounds were prepared by dilution with each solvent and analyzed by gas chromatography-mass spectrometry (GC-MS). As a result, we found that the response factor (RF) values of the target analytes were different, depending on the solvent types. In particular, benzene and toluene exhibited their highest RF values (33,674 ng−1 and 78,604 ng−1, respectively) in hexane, while the RF value of MIT was the highest (9,067 ng−1) in PBS. Considering the correlation (R2) and relative standard deviation (RSD) values, all target analytes showed fairly good values (R2 > 0.99 and RSD < 10%) in methanol and DMSO. In contrast, low R2 (0.0562) and high RSD (10.6%) values of MIT were detected in hexane, while benzene and toluene exhibited relatively low R2 and high RSD values in PBS (mean R2 = 0.9892 ± 0.0146 and mean RSD = 13.3 ± 4.1%). Based on these findings, we concluded that the results and reliability of the quantitative analysis change depending on the analyte and solvent types. Therefore, in order to accurately assess the toxicity of target compounds, reliable analytical data should be obtained, preferentially by considering the solvent types.

Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2261 ◽  
Author(s):  
Kenneth Smith ◽  
Devin G. Peterson

Differences in the aroma profiles of extruded maize puffs made from refined grain and whole grain flour were investigated. Gas chromatography/mass spectrometry/olfactometry (GC/MS/O) analysis reported 13 aroma compounds with a flavor dilution (FD) value ≥16. Quantitative analysis identified eight compounds as statistically different, of which seven compounds were higher in concentration in the whole grain sample. Sensory recombination and descriptive analysis further supported the analytical data, with higher mean aroma intensities for cooked, corn chip, roasted, and toasted attributes for the whole grain sample. Generally, the compounds responsible for perceived differences in whole grain maize extruded puffs were associated with increased levels of Maillard reaction products, such as 2-ethyl-3,5-dimethylpyrazine and 2-acetyl-2-thiazoline.


2010 ◽  
Vol 36 ◽  
pp. 337-343
Author(s):  
Punnee Sittidech ◽  
Manop Sittidech

Polybrominated biphenyls (PBBs) and polybrominated biphenyl ethers (PBDEs) are substances used in electrical and electronic products. They are restricted substances due to their potential risk to human health and the environment. In this research work, a test method was evaluated for the quantitative analysis of polybrominated diphenyl ethers (PBDEs) and polybrominated biphenyls (PBBs) in acrylonitrile-butadiene–styrene (ABS) plastic and polyethylene materials, based on solvent extraction of a plastic sample with soxhlet extraction techniques and detection by gas chromatography/mass spectrometry. We have also developed a computer program for checking the suitability of the analytical method by evaluating validation characteristics, including accuracy, precision, specificity/selectivity, limit of detection (LOD), limit of quantification (LOQ), linearity, range and sensitivity. The computer program was successfully applied for evaluation of the analytical method for prohibited PBBs and PBDEs in plastics. Graphical charts for the evaluation of the analytical method are presented along with their values, and researchers can get insight into evaluating several parameters together. It was found that the analytical method was able to quantify monobrominated - decabrominated biphenyl and monobrominated diphenyl ether–nonabrominated diphenyl ether between 100-1750 mg/kg and decabrominated diphenyl ether between 100–8,000 mg/kg. In addition, ERM-EC590 Polyethylene certified reference material from the Institute for Reference Materials and Measurements (IRMM) was used to validate the analytical method for PBBs and PBDEs in plastics. The obtained accuracy and precision indicate that the method successfully meets the required accuracy expressed as % recovery (70-130%) and the required precision expressed as percentage relative standard deviation (less than 20% RSD) of the IEC 62321:2008 international standard method.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Tao Liu ◽  
Jing Hu ◽  
Li Yong ◽  
Gang Zhang ◽  
Yi Zhang ◽  
...  

By-products (phenyl salicylate, phenyl 4-hydroxybenzoate, and xanthone) from transesterification between phenol and dimethyl carbonate (DMC) were qualitatively analyzed by gas chromatography-mass spectrometry, and a gas chromatographic method with directed injection for simultaneous quantitative analysis of the product (DPC) and by-products of the transesterification has been established. Based on the results of qualitative and quantitative analyses, the mechanism of the by-products generation was preliminarily deduced. The sample for quantitative analysis was directly diluted in acetone, and related compounds were separated on an HP-5 capillary column and detected by a hydrogen flame ionization detector (FID). The product and by-products were well separated, the correlation coefficients (r) within the concentration range of 1.0 μg/mL–100 μg/mL were ≥0.9997, the relative standard deviations were between 0.5% and 4.4%, spiked recoveries were between 91.5% and 105.6%, and detection limits were between 0.11 and 0.18 μg/mL. The established method is simple, rapid, accurate, sensitive, and highly specific. It is suitable for simultaneous qualitative and quantitative analyses of the product and by-products of transesterification between phenol and DMC.


Author(s):  
Min Wei ◽  
Feng Zheng ◽  
Xuyan Song ◽  
Ran Li ◽  
Xi Pan ◽  
...  

Abstract Background Some volatile compounds in mouthpiece cigarette adhesive emit irritating odors and affect the taste of smoking cigarettes. Therefore, it is necessary to monitor the volatile compounds in mouthpiece cigarette adhesive. Objectives A rapid and simple analytical method of volatile compounds in mouthpiece cigarette adhesive was established. Methods In this study, headspace (HS) injection coupled with gas chromatography-mass spectrometry (GC-MS) was utilized for qualitative and quantitative analysis. Initially, the volatile compounds in mouthpiece cigarette adhesives were detected by HS-GC-MS, followed by spectrum library retrieval. The detected compounds with the similarity to spectrum library of more than 85% were further identified by comparing the retention time and mass spectra of the detected volatile compounds and those of the corresponding standard samples. The quantitative analysis of 9 identified volatile compounds was performed. Results Eleven volatile compounds in the mouthpiece cigarette adhesive were accurately identified. The quantitative analytical method of 9 volatile compounds in mouthpiece cigarette adhesive was validated to have good linearities (R2 &gt; 0.9932) within the range of 20–5000 ng/g. The detection limits of 9 compounds were within the range of 3.1–147.7 ng/g. The intra- and inter-day relative standard deviations (RSDs) were less than 19.8%. The recoveries of these 9 compounds spiked into mouthpiece cigarette adhesive were from 68.1% to 108.3%. Conclusions The proposed method is rapid, simple, and accurate for qualitative and quantitative analysis of volatile compounds in the mouthpiece cigarette adhesive. Highlights The developed analytical method is expected to be used to monitor volatile compounds in various adhesives.


2014 ◽  
Vol 21 (1) ◽  
pp. 11-15
Author(s):  
Daiva Kazlauskienė ◽  
Guoda Kiliuvienė ◽  
Palma Nenortienė ◽  
Giedrė Kasparavičienė ◽  
Ieva Matukaitytė

By conducting the toxicological analysis it is meaningful to determine the analytical system that could identify simultaneously several medicinal preparations quickly and precisely. The purpose of this work was to create and validate the method of thin-layer chromatography that would be suitable to separate the components of antidepressant mixture (amitriptyline hydrochloride, paroxetine hydrochloride, sertraline hydrochloride, fluvoxamine maleate and buspirone hydrochloride) and to identify them. The system was validated with regard to the sensitivity, repetition of data, resistance and particularity. The solvent systems with potential of high separation of components in their mixture were created: acetonitrile, methanol, ammonia solution 25 percent (85:10:5); acetonitrile, methanol, ammonia solution 25 percent (75:20:5); dichlormethane, 1,4-dioxane, ammonia solution 25 percent (50:45:5); dichlormethane, 1,4-dioxane, ammonia solution 25 percent (42:55:3); trichlormethane, 1,4-dioxane, ammonia solution 25 percent (25:70:5); trichlormethane, 1,4-dioxane, ammonia solution 25 percent (60:36:4). One of the most suitable solvent systems for separation of the analyzed mixture (sertraline, amitriptyline, paroxetine, buspirone, fluvoxamine) was determined – acetonitrile, methanol, ammonia solution 25 percent (85:10:5). When this solvent system was used, the average Rf values of the analyzed compounds differed the most. Validation was conducted – the relative standard deviation (RSD, percent) of the average Rf value of the analyzed compounds varied from 0,6 to 1,8 percent and did not exceed the permissible error of 5 percent. The sensitivity of methodology was determined by assessing the intensity of the mixture’s spots on the chromatographic plate. The detection limit of buspirone was 0,0012 µg; sertraline – 0,0008 µg; amitriptyline – 0,0004 µg; fluvoxamine – 0,0004 µg; paroxetine – 0,0008 µg. The resistance of results to the changed conditions – it was determined that when the amounts of the solvents acetonitrile and methanol were increased or decreased to two milliliters, the average Rf values of the analyzed compounds did not change statistically significantly


2016 ◽  
Vol 5 (11) ◽  
pp. 5110
Author(s):  
Sartaj Ahmad Allayie ◽  
Mushtaq Ahmed Parray* ◽  
Bilal Ahmad Bhat ◽  
S. Hemalatha

The use of traditional medicines holds a great promise as an easily available source as effective medicinal agents to cure a wide range of ailments among the people particularly in tropical developing countries like India. The present study investigates the qualitative and quantitative analysis of the major bioactive constituents of N. crenulata leaf extracts. The extractive values of aqueous, acetone and chloroform extracts were found to be 11.34, 4.24 and 6.06 respectively. Qualitative phytochemical analysis of these three solvent extracts confirm the presence of Alkaloids, Saponins, Flavonoids and Phenolic compounds in all the three extracts; however, these phytochemicals were more significant in aqueous extract. Quantitative analysis was carried out using TLC method by different solvent system. Amongst various solvent systems, Butanol: acetic acid: water (9: 0.9: 0.1 v/v/v) shows maximum resolution and number of spots produced at long UV (365 nm) and under iodine vapours. The TLC chromatograms constituted different coloured phytochemical compounds with different Rf values. It can be conveniently used to evaluate the quality of different area samples. This indicates that the leaves can be useful for treating different diseases because the therapeutic activity of a plant is due to the presence of particular class of compounds and thus can serve as potential sources of useful drugs in future.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 793
Author(s):  
Emmanouil D. Tsochatzis ◽  
Joao Alberto Lopes ◽  
Margaret V. Holland ◽  
Fabiano Reniero ◽  
Giovanni Palmieri ◽  
...  

The rapid diffusion of new psychoactive substances (NPS) presents unprecedented challenges to both customs authorities and analytical laboratories involved in their detection and characterization. In this study an analytical approach to the identification and structural elucidation of a novel synthetic cannabimimetic, quinolin-8-yl-3-[(4,4-difluoropiperidin-1-yl) sulfonyl]-4-methylbenzoate (2F-QMPSB), detected in seized herbal material, is detailed. An acid precursor 4-methyl-3-(4,4-difluoro-1-piperidinylsulfonyl) benzoic acid (2F-MPSBA), has also been identified in the same seized material. After extraction from the herbal material the synthetic cannabimimetic, also referred to as synthetic cannabinoid receptor agonists or “synthetic cannabinoids”, was characterized using gas chromatography-mass spectrometry (GC-MS), 1H, 13C, 19F and 15N nuclear magnetic resonance (NMR) and high-resolution tandem mass spectrometry (HR-MS/MS) combined with chromatographic separation. A cheminformatics platform was used to manage and interpret the analytical data from these techniques.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 530
Author(s):  
Tobias Rieger ◽  
Jessen C. Oey ◽  
Volodymyr Palchyk ◽  
Alexander Hofmann ◽  
Matthias Franke ◽  
...  

More than 200 kg real waste electrical and electronic equipment (WEEE) shredder residues from a German dismantling plant were treated at 650 °C in a demonstration scale thermochemical conversion plant. The focus within this work was the generation, purification, and analysis of pyrolysis oil. Subsequent filtration and fractional distillation were combined to yield basic chemicals in high purity. By means of fractional distillation, pure monocyclic aromatic fractions containing benzene, toluene, ethylbenzene, and xylene (BTEX aromatics) as well as styrene and α-methyl styrene were isolated for chemical recycling. Mass balances were determined, and gas chromatography–mass spectrometry (GC-MS) as well as energy dispersive X-ray fluorescence (EDXRF) measurements provided data on the purity and halogen content of each fraction. This work shows that thermochemical conversion and the subsequent refining by fractional distillation is capable of recycling WEEE shredder residues, producing pure BTEX and other monocyclic aromatic fractions. A significant decrease of halogen content (up to 99%) was achieved with the applied methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Kyoung Kim ◽  
Sang Cheol Park ◽  
Geonha Park ◽  
Eunjung Choi ◽  
Yura Ji ◽  
...  

AbstractThe present study introduces a systematic approach using analytical quality by design (AQbD) methodology for the development of a qualified liquid chromatographic analytical method, which is a challenge in herbal medicinal products due to the intrinsic complex components of botanical sources. The ultra-high-performance liquid chromatography-photodiode array-mass spectrometry (UHPLC-PDA-MS) technique for 11 flavonoids in Genkwa Flos was utilized through the entire analytical processes, from the risk assessment study to the factor screening test, and finally in method optimization employing central composite design (CCD). In this approach, column temperature and mobile solvent slope were found to be critical method parameters (CMPs) and each of the eleven flavonoid peaks’ resolution values were used as critical method attributes (CMAs) through data mining conversion formulas. An optimum chromatographic method in the design space was calculated by mathematical and response surface methodology (RSM). The established chromatographic condition is as follows: acetonitrile and 0.1% formic acid gradient elution (0–13 min, 10–45%; 13–13.5 min, 45–100%; 13.5–14 min, 100–10%; 14–15 min, 10% acetonitrile), column temperature 28℃, detection wavelength 335 nm, and flow rate 0.35 mL/min using C18 (50 × 2.1 mm, 1.7 μm) column. A validation study was also performed successfully for apigenin 7-O-glucuronide, apigenin, and genkwanin. A few important validation results were as follows: linearity over 0.999 coefficient of correlation, detection limit of 2.87–22.41, quantitation limit of 8.70–67.92, relative standard deviation of precision less than 0.22%, and accuracy between 100.13 and 102.49% for apigenin, genkwanin, and apigenin 7-O-glucuronide. In conclusion, the present design-based approach provide a systematic platform that can be effectively applied to ensure pharmaceutically qualified analytical data from complex natural products based botanical drug.


BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Ranju Bansal ◽  
Ranjit Singh ◽  
Khushpal Kaur

Abstract Background Environment-friendly fast and accurate mid-infrared spectroscopic methods have been developed for the quantitative analysis of doxorubicin hydrochloride (DOX) and arterolane maleate (ALM) in bulk and marketed formulations. Both transmittance and reflectance modes have been used for the analysis and a comparison has been drawn for better accuracy. The analytical methods were validated in accordance with International Council for Harmonisation (ICH) guidelines Results The proposed methods have been successfully developed and validated for the quantification of doxorubicin and arterolane maleate in solid bulk and dosage form. High recovery values in both the modes, while analysing DOX and ALM, indicated good accuracy of the methods. The methods showed excellent repeatability and intermediate precision [% RSD (Relative Standard Deviation < 2.0%]. The assay values of the drugs in solid dosage forms were also found close to the labelled claim. Conclusion The proposed Fourier transform infrared (FT-IR) spectroscopic methods were found to be specific, reproducible, valid and could be used as general methods for the quantification of most of the solid drug preparations such as tablets, capsules and powders.


Sign in / Sign up

Export Citation Format

Share Document