scholarly journals Groundwater Quality on the Adriatic Karst Island of Mljet (Croatia) and Its Implications on Water Supply

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Staša Borović ◽  
Josip Terzić ◽  
Marco Pola

Water supply of the islands is a global challenge, especially in the countries which have highly indented coastlines with numerous islands. The island of Mljet in Croatia was investigated due to its unique source of water supply: desalination of water from brackish lakes—blatinas—fed by groundwater and connected to the sea by karst conduits. Water sampling and chemical analyses were performed during hydrological minimum and maximum with regard to groundwater levels in 2005/2006 and minimum in 2016. A total of 13 samples were analysed within the study: 10 samples were taken from blatinas, 1 from pit well, and 2 from borehole wells. All waters sampled from the lakes are of Na-Cl type. The seawater percentage in the lakes used to extract feed water for desalination plants, calculated by conservative mixing approach, is relatively low (0.7-9.8%) and varies in correlation with hydrological seasons. Low proportion of seawater is an essential factor of cost minimisation in desalination by the installed reverse osmosis (RO) plants. Daily monitoring of total dissolved solids in the feed water was introduced in May 2016, and its results were analysed in the context of precipitation—a sole source of island aquifer recharge. Maximum concentrations were observed during September and interpreted to be caused by a combination of natural and anthropogenic pressure during the summer tourist season. Minimum concentrations were expected after the rainy season in the cold part of the year but were observed in June instead. Due to a short observation period and untypical distribution of precipitation in the same time interval, the data can only be considered indicative. An unusual pattern of sulphate anion concentrations, which cannot be attributed solely to fresh- and seawater mixing, was observed in one of the blatinas, but its origin could not be determined based on available data. Taking into account all the presented data on groundwater quality, climate change predictions, the connection of water supply system to the mainland and problems with the effluent treatment, it is clear that the main future challenge will be the creation of an island-wide sustainable water management plan followed by continuous monitoring and research.

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1562
Author(s):  
Hrvoje Meaški ◽  
Ranko Biondić ◽  
Jelena Loborec ◽  
Dijana Oskoruš

With its quantities of groundwater, the Zagreb aquifer is an irreplaceable water-supply resource that forms the basis of the water-supply of Zagreb, the capital and largest city of the Republic of Croatia. The depth of the Zagreb aquifer system is about 100 m at the deepest part, and the two main aquifers of the aquifer system can be separated vertically by low-permeable clay deposits. In the area of the Zagreb aquifer, there are several active and reserve public water-supply sites, the largest of which are Mala Mlaka and Petruševec. The groundwater level of the Zagreb aquifer is directly related to the water levels of the Sava River, so any erosive change in the Sava riverbed decreases the groundwater levels in the aquifer. In the last 50 years, the groundwater levels in the Zagreb aquifer have decreased significantly, being most pronounced in the area of the Mala Mlaka water-supply site. This has affected the normal functioning of the public water-supply because the suction baskets of the pumps in the dug wells at the Mala Mlaka water-supply site occasionally remain partially or completely in the unsaturated aquifer zone during low groundwater levels, which reduces capacity or prevents pumping from these water-supply facilities. Immediately next to the Mala Mlaka water-supply site is the Sava-Odra Canal, which was built to protect Zagreb from flooding and into which the Sava River flows when its flow rate exceeds 2350 m3/s. This reduces the flow rate of the Sava River near Zagreb and the possibility of flooding urban areas. To prevent problems with groundwater levels at the Mala Mlaka water-supply facilities and to enable normal water-supply, even in extremely dry periods, several variants of managed aquifer recharge (MAR) are proposed here. In order to determine the optimal solution for MAR and to enable the normal functioning of one of the main sites of water-supply in the Zagreb water-supply system. Groundwater flow for the period of 2006 to 2010 was simulated for six different variants of MAR. One assumes a constant potential in the Sava-Odra Canal, three are related to recharge from the Sava-Odra Canal with different backwater levels in the infiltration facility (elevations of 114, 114.5, and 115 m a.s.l.), and two with three absorption wells upstream of the Mala Mlaka water pumping station (injection of 300 L/s each and 500 L/s each). The most favorable method to recharge artificially the Zagreb aquifer near the Mala Mlaka pumping station is achieved with an infiltration facility using an elevation of 115 m a.s.l. The use of such a facility will enable the smooth operation of the water pumping station and the possibility of increasing the pumping quantities at the Mala Mlaka water pumping station for the future development of the area.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1952
Author(s):  
Subrata Halder ◽  
Lingaraj Dhal ◽  
Madan K. Jha

Providing sustainable water supply for domestic needs and irrigated agriculture is one of the most significant challenges for the current century. This challenge is more daunting in coastal regions. Groundwater plays a pivotal role in addressing this challenge and hence, it is under growing stress in several parts of the world. To address this challenge, a proper understanding of groundwater characteristics in an area is essential. In this study, spatio-temporal analyses of pre-monsoon and post-monsoon groundwater-levels of two coastal aquifer systems (upper leaky confined and underlying confined) were carried out in Purba Medinipur District, West Bengal, India. Trend analysis of seasonal groundwater-levels of the two aquifers systems was also performed using Mann-Kendall test, Linear Regression test, and Innovative Trend test. Finally, the status of seawater intrusion in the two aquifers was evaluated using available groundwater-quality data of Chloride (Cl−) and Total Dissolve Solids (TDS). Considerable spatial and temporal variability was found in the seasonal groundwater-levels of the two aquifers. Further, decreasing trends were spotted in the pre-monsoon and post-monsoon groundwater-level time series of the leaky confined and confined aquifers, except pre-monsoon groundwater-levels in Contai-I and Deshpran blocks, and the post-monsoon groundwater-level in Ramnagar-I block for the leaky confined aquifer. The leaky confined aquifer in Contai-I, Contai-III, and Deshpran blocks and the confined aquifer in Nandigram-I and Nandigram-II blocks are vulnerable to seawater intrusion. There is an urgent need for the real-time monitoring of groundwater-levels and groundwater quality in both the aquifer systems, which can ensure efficient management of coastal groundwater reserves.


2021 ◽  
Vol 246 ◽  
pp. 106659
Author(s):  
Sunil Kumar Jha ◽  
Vinay Kumar Mishra ◽  
Chhedi Lal Verma ◽  
Navneet Sharma ◽  
Alok Kumar Sikka ◽  
...  

Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Kyoochul Ha ◽  
Eunhee Lee ◽  
Hyowon An ◽  
Sunghyun Kim ◽  
Changhui Park ◽  
...  

This study was conducted to evaluate seasonal groundwater quality due to groundwater pumping and hydrochemical characteristics with groundwater level fluctuations in an agricultural area in Korea. Groundwater levels were observed for about one year using automatic monitoring sensors, and groundwater uses were estimated based on the monitoring data. Groundwater use in the area is closely related to irrigation for rice farming, and rising groundwater levels occur during the pumping, which may be caused by the irrigation water of rice paddies. Hydrochemical analysis results for two separate times (17 July and 1 October 2019) show that the dissolved components in groundwater decreased overall due to dilution, especially at wells in the alluvial aquifer and shallow depth. More than 50% of the samples were classified as CaHCO3 water type, and changes in water type occurred depending on the well location. Water quality changes were small at most wells, but changes at some wells were evident. In addition, the groundwater quality was confirmed to have the effect of saltwater supplied during the 2018 drought by comparison with seawater. According to principal component analysis (PCA), the water quality from July to October was confirmed to have changed due to dilution, and the effect was strong at shallow wells. In the study areas where rice paddy farming is active in summer, irrigation water may be one of the important factors changing the groundwater quality. These results provide a qualitative and quantitative basis for groundwater quality change in agricultural areas, particularly rice paddies areas, along with groundwater level and usage.


Author(s):  
Florian Brückner ◽  
Rebecca Bahls ◽  
Mohammad Alqadi ◽  
Falk Lindenmaier ◽  
Ibraheem Hamdan ◽  
...  

AbstractIn 2017, a comprehensive review of groundwater resources in Jordan was carried out for the first time since 1995. The change in groundwater levels between 1995 and 2017 was found to be dramatic: large declines have been recorded all over the country, reaching more than 100 m in some areas. The most affected areas are those with large-scale groundwater-irrigated agriculture, but areas that are only used for public water supply are also affected. The decrease of groundwater levels and saturated thickness poses a growing threat for drinking water supply and the demand has to be met from increasingly deeper and more remote sources, causing higher costs for drilling and extraction. Groundwater-level contour lines show that groundwater flow direction has completely reversed in some parts of the main aquifer. Consequently, previously established conceptual models, such as the concept of 12 “groundwater basins” often used in Jordan should be revised or replaced. Additionally, hydraulic conditions are changing from confined to unconfined; this is most likely a major driver for geogenic pollution with heavy metals through leakage from the overlying bituminous aquitard. Three exemplary case studies are presented to illustrate and discuss the main causes for the decline of the water tables (agriculture and population growth) and to show how the results of this assessment can be used on a regional scale.


2003 ◽  
Vol 3 (3) ◽  
pp. 289-295
Author(s):  
M. Emmert ◽  
A. Schneck

For drinking water supply in the Donauried area (52 km2) approximately 950 l/s groundwater are abstracted from 6 catchment plants with 220 wells. In the Donauried also intensive farming and several natural parks with valuable but drained lower moors are located so that many conflicts have arisen around the water. In a joint research project the goal is to manage the 6 plants' water demands, hydrology and season to achieve a water-optimum for each party. That is to have enough water for water supply, to guarantee farming without affecting groundwater quality and to rewet the lower moors. This task is solved by developing an optimisation algorithm that is based on a numerical groundwater flow model taking into account the water demands of all parties.


2013 ◽  
Vol 53 (1) ◽  
pp. 407
Author(s):  
Chris Hewitson ◽  
Eva Dec ◽  
Tony Lines

This peer-reviewed paper examines the risks and responsibilities of water providers and the process resource companies should undertake to document how they will deliver a safe and secure water supply to their employees and contractors, and the communities in which they operate, thereby reducing the risks of water quality incidents and managing the impact to the organisation should an incident occur. Water quality incidents can have major impacts to human health and the brand perception of the resource company supplying the water, and can potentially shutdown resource abstraction. Resource companies have a duty of care to provide a secure and safe drinking water supply. This is reinforced by state health departments directing resource organisations to comply with the Australian Drinking Water Guidelines (ADWG), which were updated in 2011 (National Health and Medical Research Council, 2011). Organisations in the CSG industry experience an additional challenge—managing water by-product from gas extraction. There are drivers for the beneficial use of this water—including irrigation, aquifer recharge and municipal supply—resulting in changes to legislation in Queensland (DERM, 2010) that require a process similar to ADWG recommendations, where beneficial use or disposal may impact potable supplies. The ADWG provides clear guidance to potable water providers—whether they are supplying a few consumers or major towns requiring a Drinking Water Quality Management System (DWQM System). This guidance includes documenting a clear process to securing a clean water source, making the water safe to consume and proving it is safe. Developing a DWQM System enables resource companies to understand issues in supplying drinking water through regular review and improvement, while minimising and managing the health risks to consumers.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1115 ◽  
Author(s):  
Ehsan Maskooni ◽  
Mehran Naseri-Rad ◽  
Ronny Berndtsson ◽  
Kei Nakagawa

Groundwater is a major source of drinking and agricultural water supply in arid and semiarid regions. Poor groundwater quality can be a threat to human health especially when it is combined with hazardous pollutants like heavy metals. In this study, an innovative method involving entropy weighted groundwater quality index for both physicochemical and heavy metal content was used for a semiarid region. The entropy weighted index was used to assess the groundwater’s suitability for drinking and irrigation purposes. Thus, groundwater from 19 sampling sites was used for analyses of physicochemical properties (electrical conductivity—EC, pH, K+, Ca2+, Na+, SO42−, Cl−, HCO3−, TDS, NO3−, F−, biochemical oxygen demand—BOD, dissolved oxygen—DO, and chemical oxygen demand—COD) and heavy metal content (As, Ca, Sb, Se, Zn, Cu, Ba, Mn, and Cr). To evaluate the overall pollution status in the region, heavy metal indices such as the modified heavy metal pollution index (m-HPI), heavy metal evaluation index (HEI), Nemerow index (NeI), and ecological risks of heavy metals (ERI) were calculated and compared. The results showed that Cd concentration plays a significant role in negatively affecting the groundwater quality. Thus, three wells were classified as poor water quality and not acceptable for drinking water supply. The maximum concentration of heavy metals such as Cd, Se, and Sb was higher than permissible limits by the World Health Organization (WHO) standards. However, all wells except one were suitable for agricultural purposes. The advantage of the innovative entropy weighted groundwater quality index for both physicochemical and heavy metal content, is that it permits objectivity when selecting the weights and reduces the error that may be caused by subjectivity. Thus, the new index can be used by groundwater managers and policymakers to better decide the water’s suitability for consumption.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 721 ◽  
Author(s):  
Andreas Lindhe ◽  
Lars Rosén ◽  
Per-Olof Johansson ◽  
Tommy Norberg

Botswana experiences a water stressed situation due to the climate and a continuously increasing water demand. Managed Aquifer Recharge (MAR) is considered, among other measures, to improve the situation. To evaluate the possibility for increased water supply security, a probabilistic and dynamic water supply security model was developed. Statistically generated time series of source water availability are used in combination with the dynamic storages in dams and aquifers, and the possible supply is compared with the demand to simulate the magnitude and probability of water supply shortages. The model simulates the system and possible mitigation measures from 2013 to 2035 (23 years), using one-month time steps. The original system is not able to meet the demand, and the estimated volumetric supply reliability in the year 2035 is 0.51. An additional surface water dam (now implemented) will increase the reliability to 0.88 but there will still be a significant water shortage problem. Implementing large-scale MAR can further improve the reliability to at least 0.95. System properties limiting the effect of MAR are identified using the model and show how to further improve the effect of MAR. The case study results illustrate the importance and benefit of using an integrated approach, including time-dependence and future scenarios, when evaluating the need and potential of MAR.


2020 ◽  
Author(s):  
David Seddon ◽  
Japhet J. Kashaigili ◽  
Richard G. Taylor ◽  
Mark O. Cuthbert ◽  
Lucas Mihale ◽  
...  

<p>Groundwater, and its replenishment via recharge, is critical to livelihoods and poverty alleviation in drylands of sub-Saharan Africa and beyond, yet the processes by which groundwater is replenished remain inadequately observed and resolved. Here, we present three lines of evidence, from an extensively-monitored wellfield in central semi-arid Tanzania, indicating focused groundwater recharge occurring via leakage from episodic, ephemeral stream discharges. First, the duration of ephemeral streamflow observed from daily records from 2007 to 2016 correlates strongly (R<sup>2</sup> = 0.85) with the magnitude of groundwater recharge events observed and estimated from piezometric observations. Second, high-resolution (hourly) monitoring of groundwater levels and stream stage, established in advance of the 2015-16 El Niño, shows the formation and decay of groundwater mounds beneath episodically inundated adjacent streambeds. Third, stable-isotope ratios of O and H of groundwater and precipitation as well as perennial and ephemeral surface waters trace the origin of groundwater to ephemeral stream discharges. The identification and characterisation of focused groundwater recharge have important implications not only, locally, for protecting and potentially augmenting replenishment of a wellfield supplying the capital of Tanzania through Managed Aquifer Recharge but also, more widely, in understanding and modelling groundwater recharge in dryland environments.</p>


Sign in / Sign up

Export Citation Format

Share Document