scholarly journals Predicting MicroRNA Target Genes and Identifying Hub Genes in IIA Stage Colon Cancer Patients Using Bioinformatics Analysis

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Zhiyong Dong ◽  
Wei Lin ◽  
Stacy A. Kujawa ◽  
Shike Wu ◽  
Cunchuan Wang

Background. Colon cancer is a heterogeneous disease, differing in clinical symptoms, epigenetics, and prognosis for each individual patient. Identifying the core genes is important for early diagnoses and it provides a more precise method for treating colon cancer. Materials and Methods. In this study, we wanted to pinpoint these core genes so we obtained GSE101502 microRNA profiles from the GEO database, which resulted in 17 differential expressed microRNAs that were identified by GEO2R analysis. Then, 875 upregulated and 2920 downregulated target genes were predicted by FunRich. GO and KEGG pathway were used to do enrich analysis. Results. GO analysis indicated that upregulated genes were significantly enriched in the regulation of cell communication and signaling and in nervous system development, while the downregulated genes were significantly enriched in nervous system development and regulation of transcription from the RNA polymerase II promoter. KEGG pathway analysis suggested that the upregulated genes were enriched in axon guidance, MAPK signaling pathway, and endocytosis, while the downregulated genes existed in pathways in cancer, focal adhesion, and PI3K-Akt signaling pathway. The top four molecules including 82 hub genes were identified from the PPI network and involved in endocytosis, spliceosome, TGF-beta signaling pathway, and lysosome. Finally, NUDT21, GNB1, CLINT1, and COL1A2 core gene were selected due to their correlation with the prognosis of IIA stage colon cancer. Conclusion. this study suggested that NUDT21, GNB1, CLINT1, and COL1A2 might be the core genes for colon cancer that play an important role in the development and prognosis of IIA stage colon cancer.

2020 ◽  
Author(s):  
Xinyue Chen ◽  
Lijun Hao

Abstract Background: Breast cancer (BC) is the most prevalent cancer among females globally. microRNAs (miRNAs) could regulate the expression levels of cancer-related genes through binding with target mRNAs. In various cancers, the abnormal expression of miR-130b has been detected. We aims to investigate the molecular mechanism and biological function of miR130b in breast cancer.Methods: We obtained two microRNA expression profiles from the Gene Expression Omnibus (GEO) database, including GSE45666 and GSE26659. We identified differentially expressed miRNAs (DE-miRNAs) between BC tissue and normal breast tissue based on the GEO2R web tool. DE-miRNAs were filtered by significant prognostic value resulting from Kaplan–Meier plotter. We used the JASPAR database to explore upstream regulators of miR-130b. The potential molecular mechanisms of miR-130b correlation genes were revealed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis in WebGestalt. Protein–protein interaction (PPI) network of miR-130b target genes was constructed by STRING. Cytoscape software was used to visualize the PPI network and hub genes.Results: miR-130b was highly expressed in breast cancer tissues, which positively correlates with poor prognostic. JASPAR revealed THAP11 might be the upstream regulator of miR-130b. In addition, GO, and KEGG pathway revealed that miR-130b positively regulated PFKP, STAT1, SRC, and NOTCH2, participating in the Thyroid hormone signaling pathway. The PPI network further identified that AR, KIT, and ESR1 as hub genes in BC development.Conclusion: miR-130b, which is regulated by THAP11, acts as an oncogene and prognostic biomarker in BC by mediating the Thyroid hormone signaling pathway and potential target genes. miR-130b might be a novel therapeutic target for BC treatment.


2020 ◽  
Author(s):  
HanYu Zhang ◽  
XiuLing Zhou ◽  
XiaoMing Zhang ◽  
ZhongYu Yu ◽  
JianTao Wang ◽  
...  

Abstract Purpose: Breast cancer (BC) is the most common malignant tumor in women. Due to the mechanism of BC has not yet been completely clear, we aim to identify the key pathway and genes in BC based on bioinformatics method. Methods: Samples were obtained from NCBI-GEO website. Then, GEO2R tools and Venn diagram software were used to identify the differentially expressed genes (DEGs). Next, analyze Kyoto Encyclopedia of Gene and Genome (KEGG) pathway and gene ontology (GO) were analyzed by Database for Annotation, Visualization and Integrated Discovery (DAVID). The protein-protein interaction (PPI) network was drew by Search Tool for the Retrieval of Interacting Genes (STRING). Afterwards, we selected the core genes from PPI network by Molecular Complex Detection (MCODE) plug-in. And we performed Kaplan-Meier analysis to assess the overall survival of the core genes. Last Gene Expression Profiling Interactive Analysis (GEPIA) was used to discover highly expressed genes in BC. Results: DEGs contained 23 up-regulated and 32 down-regulated genes. GO described molecular function (MF), cellular component (CC), and biological process (BP). KEGG pathway showed DEGs were mainly involved in ECM-receptor interaction, p53 signaling pathway, PPAR signaling pathway, signaling pathways regulating pluripotency of stem cells, cGMP-PKG signaling pathway and Tyrosine metabolism. Finally, we screened 15 core genes, 14 of which had adverse prognosis and high expression in BC. Conclusions: In the current study, 14 core genes of BC were identified based on bioinformatics method, which could useful to provide essential information for early diagnosis and treatment of BC.


Author(s):  
Yue Qi ◽  
GuiE Ma

Objective: This work aimed to investigate the molecular mechanisms underlying the efficacy of vemurafenib as a treatment for melanoma. Methods: The GSE52882 dataset, which includes A375 and A2058 melanoma cell lines treated with vemurafenib and dimethyl sulfoxide (DMSO), and clinical information associated with melanoma patients, were acquired from the Gene Expression Omnibus (GEO) database and University of California Santa Cruz (UCSC), respectively. Functional enrichment analysis, protein-protein interaction (PPI) network construction, sub-module analysis, and transcriptional regulation analysis were performed on overlapping differentially expressed genes (DEGs) identified in both cell lines. Finally, we performed a survival analysis based on the genes identified. Results: A total of 447 consistently overlapping DEGs (176 up- and 271 down-regulated DEGs) were screened. Upregulated genes were enriched in pathways of neurotrophin signaling, estrogen signaling, and transcriptional misregulation in cancer. Downregulated DEGs played essential roles in melanogenesis, pathways of cancer, PI3K-Akt signaling pathway, and AMPK signaling pathway. Upregulated (MMP2, JUN, KAT28, and PIK3R3) and downregulated genes (CXCL8, CCND1, IGF1R, and ITGB3) were considered as hub genes in the PPI network. Additionally, PIK3R3 and LEF1 served as key genes in the regulatory network. The overexpression of MMP2 and CXCL8 was associated with a poor prognosis in melanoma patients. Results: A total of 447 consistently overlapping DEGs (176 up- and 271 down-regulated DEGs) were screened. Upregulated genes were enriched in pathways of neurotrophin signaling, estrogen signaling, and transcriptional misregulation in cancer. Downregulated DEGs played essential roles in melanogenesis, pathways of cancer, PI3K-Akt signaling pathway, and AMPK signaling pathway. Upregulated (MMP2, JUN, KAT28, and PIK3R3) and downregulated genes (CXCL8, CCND1, IGF1R, and ITGB3) were considered as hub genes in the PPI network. Additionally, PIK3R3 and LEF1 served as key genes in the regulatory network. The overexpression of MMP2 and CXCL8 was associated with a poor prognosis in melanoma patients. Conclusion: MMP2, CXCL8, PIK3R3, ITGB3, and LEF1 may play roles in the efficacy of vemurafenib treatment in melanoma; for example, MMP2 and PIK3R3 are likely associated with vemurafenib resistance. These findings will contribute to the development of novel therapies for melanoma.


2021 ◽  
Author(s):  
Xi Cen ◽  
Yan Wang ◽  
LeiLei Zhang ◽  
XiaoXiao Xue ◽  
Yan Wang ◽  
...  

Abstract BackgroundType 2 diabetes mellitus (T2DM) is regarded as Pi Dan disease in traditional Chinese medicine (TCM). Dahuang Huanglian Xiexin Decoction (DHXD), a classical TCM formula, has been used for treating Pi Dan disease in clinic, its pharmacological mechanism has not been elucidated. MethodsThis study used network pharmacological analysis and molecular docking approach to explore the mechanism of DHXD on T2DM. Firstly, the compounds in DHXD were obtained from TCMSP and TCMID databases, the potential targets were determined based on TCMSP and UniProt databases. Next, Genecards, Digenet and UniProt databases were used to identify the targets of T2DM. Then, the protein-protein interaction (PPI) network was established with overlapping genes of T2DM and compounds, and the core targets in the network were identified and analyzed. Then, the David database was used for GO and KEGG enrichment analysis. Finally, the target genes were selected and the molecular docking was completed by Autodock software to observe the binding level of active components with target genes.ResultsA total of 397 related components and 128 overlapping genes were identified. After enrichment analysis, it was found that HIF-1, TNF, IL-17 and other signaling pathways, as well as DNA transcription, gene expression, apoptosis and other cellular biological processes had the strongest correlation with the treatment of T2DM by DHXD, and most of them occurred in the extracellular space, plasma membrane and other places, which were related to enzyme binding and protein binding. In addition, 42 core genes of DHXD, such as VEGFA, TP53 and MAPK1, were considered as potential therapeutic targets, indicating the potential mechanism of DHXD on T2DM. Finally, the results of molecular docking showed that HIF-1 pathway had strong correlation with the target genes INSR and GLUT4, quercetin and berberine had the strongest binding power with them respectively.ConclusionThis study summarized the main components of DHXD in the treatment of T2DM, identified the core genes and pathways, and systematically analyzed the interaction of related targets, trying to lay the foundation for clarifying the potential mechanism of DHXD on T2DM, so as to carry out further research in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yunshu Gao ◽  
Jiahua Xu ◽  
Hongwei Li ◽  
Yi Hu ◽  
Guanzhen Yu

It is reported that microRNAs (miRNA) have paramount functions in many cellular biological processes, development, metabolism, differentiation, survival, proliferation, and apoptosis included, some of which are involved in metastasis of tumors, such as melanoma. Here, three metastasis-associated miRNAs, miR-18a-5p (upregulated), miR-155-5p (downregulated), and miR-93-5p (upregulated), were identified from a total of 63 different expression miRNAs (DEMs) in metastatic melanoma compared with primary melanoma. We predicted 262 target genes of miR-18a-5p, 904 miR-155-5p target genes, and 1220 miR-93-5p target genes. They participated in pathways concerning melanoma, such as TNF signaling pathway, pathways in cancer, FoxO signaling pathway, cell cycle, Hippo signaling pathway, and TGF-beta signaling pathway. We identified the top 10 hub nodes whose degrees were higher for each survival-associated miRNA as hub genes through constructing the PPI network. Using the selected miRNA and the hub genes, we constructed the miRNA-hub gene network, and PTEN and CCND1 were found to be regulated by all three miRNAs. Of note, miR-155-5p was obviously downregulated in metastatic melanoma tissues, and miR-18a-5p and miR-93-5p were obviously regulated positively in metastatic melanoma tissues. In validating experiments, miR-155-5p's overexpression inhibited miR-18a-5p's and miR-93-5p's expression, which could all significantly reduce SK-MEL-28 cells' invasive ability. Finally, miR-93-5p and its potential target gene UBC were selected for further validation. We found that miR-93-5p's inhibition could reduce SK-MEL-28 cell's invasive ability through upregulated the expression of UBC, and the anti-invasive effect was reserved by downregulation of UBC. The results show that the selected three metastasis-associated miRNAs participate in the process of melanoma metastasis via regulating their target genes, providing a potential molecular mechanism for this disease.


2020 ◽  
Author(s):  
Xin Liao ◽  
jian li ◽  
Yuxiang Chen ◽  
Haibo Ding ◽  
Chen Liu ◽  
...  

Abstract Background: Cancer is still the leading cause of death in humans, and the fourth leading cause of death is colorectal cancer. Tumor bioinformatics has been developing in recent years, the prognosis and quality of life of patients can be improved by using relevant tools to understand the molecular pathogenesis of colorectal cancer and related prognostic markers. Methods: In this study, Bioinformatics analysis of the snp-related data of colon cancer patients from the TCGA database, it was found that the expression levels of 4 mutated genes (CTTNBP2,DAPK1, DMXL1,SPTBN2) were significantly different from those of wild type and their prognosis. In order to explore how the core genes affect the prognosis of patients, the gene expression of these core genes was analyzed. Results: It was found that the core genes are related to a variety of cancer-related pathway genes, including pi3k-akt pathway and TSC/mTOR pathway. Drug sensitivity analysis showed that SPTBN2 could be inhibited by a variety of drugs, including austocystin D, afatinib, and belinostat. Tumor immunity is closely related to tumor therapy. Through the analysis of immune infiltration of core genes, it was found that DAPK1 and DMXL2 were associated with a variety of immune cell infiltration. Conclusion: Therefore, the detection of genetic mutations and related expressions may be significant in predicting the prognosis of patients with colon cancer. Through the study of high-throughput information excavating, it was discovered that the molecular pathogenesis and prognosis of patients with colon cancer were helpful to the bioinformatics theory.


2020 ◽  
Author(s):  
Ling Zhang ◽  
Yunkai Dai ◽  
Yuping Li ◽  
Weijing Chen ◽  
Ruliu Li ◽  
...  

Abstract Background Chronic gastritis (CG) is an inflammatory disease which is one of the common diseases of the digestive system. To investigate the mechanisms of herbal pair Acoritataninowii Rhizoma(Shichangpu, AR) and Curcumae Radix༈Yujin, CR༉ in treatment of CG based on the network pharmacology. Methods The possible active ingredients and targets of AR-CR were obtained by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The UniProt database was used to query the human gene corresponding to each target protein. The genes related to CG were collected from the GeneCards database, the OMIM database, the DisGeNET database and the PharmGKB database. Intersected the target genes of AR-CR and CG, then protein-protein interaction(PPI) network was constructed by STRING website. The overlapped genes were subjected to gene ontology༈GO༉enrichment and Kyoto encyclopedia of genes and genomes༈KEGG༉pathway enrichment analyses by David. Results 45 intersection genes were obtained, and there were 40 targets in the PPI network for protein interaction, the kernel targets with Degree ≥ 10 included AKT1, TNF, JUN, MAPK3, MAPK8 and MAPK1. The Go enrichment analysis was mainly related to protein binding, enzyme binding, protein homodimerization activity, etc. The KEGG pathway enrichment analyses mainly involved the Pathways in cancer, TNF signaling pathway, Apoptosis, and VEGF signaling pathway. Conclusion AR-CR might delayed, blocked or reversed the atrophy, intestinal metaplasia, dysplasia and canceration of gastric mucosa by targeting key proteins and signal pathways,achieved the effect of the treatment of CG.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhengde Zhao ◽  
Qining Fu ◽  
Liangzhu Hu ◽  
Yangdong Liu

Objective: The aim was to study the preliminary screening of the crucial genes in intimal hyperplasia in the venous segment of arteriovenous (AV) fistula and the underlying potential molecular mechanisms of intimal hyperplasia with bioinformatics analysis.Methods: The gene expression profile data (GSE39488) was analyzed to identify differentially expressed genes (DEGs). We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of DEGs. Gene set enrichment analysis (GSEA) was used to understand the potential activated signaling pathway. The protein–protein interaction (PPI) network was constructed with the STRING database and Cytoscape software. The Venn diagram between 10 hub genes and gene sets of 4 crucial signaling pathways was used to obtain core genes and relevant potential pathways. Furthermore, GSEAs were performed to understand their biological functions.Results: A total of 185 DEGs were screened in this study. The main biological function of the 111 upregulated genes in AV fistula primarily concentrated on cell proliferation and vascular remodeling, and the 74 downregulated genes in AV fistula were enriched in the biological function mainly relevant to inflammation. GSEA found four signaling pathways crucial for intimal hyperplasia, namely, MAPK, NOD-like, Cell Cycle, and TGF-beta signaling pathway. A total of 10 hub genes were identified, namely, EGR1, EGR2, EGR3, NR4A1, NR4A2, DUSP1, CXCR4, ATF3, CCL4, and CYR61. Particularly, DUSP1 and NR4A1 were identified as core genes that potentially participate in the MAPK signaling pathway. In AV fistula, the biological processes and pathways were primarily involved with MAPK signaling pathway and MAPK-mediated pathway with the high expression of DUSP1 and were highly relevant to cell proliferation and inflammation with the low expression of DUSP1. Besides, the biological processes and pathways in AV fistula with the high expression of NR4A1 similarly included the MAPK signaling pathway and the pathway mediated by MAPK signaling, and it was mainly involved with inflammation in AV fistula with the low expression of NR4A1.Conclusion: We screened four potential signaling pathways relevant to intimal hyperplasia and identified 10 hub genes, including two core genes (i.e., DUSP1 and NR4A1). Two core genes potentially participate in the MAPK signaling pathway and might serve as the therapeutic targets of intimal hyperplasia to prevent stenosis after AV fistula creation.


2020 ◽  
Author(s):  
Yu Gong ◽  
Xiaoyang Qi ◽  
Jinjin Fu ◽  
Jun Qian ◽  
Yuwen Jiao ◽  
...  

Abstract Background: Increasing evidence implicates circular RNAs (circRNAs) have been involved in human cancer progression. However, the mechanism remains unclear. In this study, we identified novel circRNAs related to gastric cancer and constructed a circRNA-miRNA-mRNA network.Methods: Microarray dataset GSE83521 and GSE93541 were obtained from Gene Expression Omnibus (GEO). Then, we used computational biology to select differentially co-expressed circRNAs in GC tissue and plasma and detected the expression of selected circRNAs in gastric cell lines by quantitative real‑time polymerase chain reaction (qRT‑PCR). We also chose the candidate miRNAs and their target genes for circRNAs through online tools. Combining the predictions of miRNAs and target mRNAs, a competing endogenous RNA regulatory network was established. Functional and pathway enrichment analyses were performed, and interactions between proteins were predicted by using String and Cytoscape. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to elucidate the possible functions of these differentially expressed circRNAs.Results: The regulatory network constructed using the microarray datasets (GSE83521 and GSE93541) contained three differentially co-expressed circRNAs (DECs). A circRNA-miRNA-mRNA network was constructed based on 3 circRNAs, 43 miRNAs and 119 mRNAs. GO and KEGG analysis showed that regulation of apoptotic signaling pathway and PI3K−Akt signaling pathway were highest degrees of enrichment respectively. We established a protein-protein interaction (PPI) network consisting of 165 nodes and 170 edges and identified hub genes by MCODE plugin in Cytoscape. Furthermore, a core circRNA-miRNA-mRNA network was constructed base on hub genes. Hsa_circ_0001013 was finally determined to play an important role in the pathogenesis of GC according to the core circRNA-miRNA-mRNA network.Conclusions: We propose a new circRNA-miRNA-mRNA network associated with the pathogenesis of GC. The network may become a new molecular biomarker and be used to develop potential therapeutic strategies for gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document