scholarly journals Characteristics of Unloading Creep of Tuffaceous Sandstone in East Tianshan Tunnel under Freeze-Thaw Cycles

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Zhijun Zhou ◽  
Haochen Zhan ◽  
Jiangyang Hu ◽  
Chenning Ren

The physicomechanical properties of tunnel surrounding rock are influenced by many factors such as the external environment and freeze-thaw cycles, especially in engineering in high cold regions. To understand the characteristics of freeze-thaw cycles on the creep properties of rocks in high cold regions, a freeze-thaw test, SEM test, triaxial compression test, and triaxial unloading creep test were carried out for tuffaceous sandstone in the G575 East Tianshan Tunnel in Hami, Xinjiang. The results show the following: (1) the freeze-thaw cycle reduces the degree of cementation of mineral particles in a microcosm, manifested on a macro scale by the scaling mode and crack propagation mode; (2) the effect of freeze-thaw cycles reduces the compressive strength and shear strength of rock samples (i.e., ductility enhancement); (3) for tuffaceous sandstone, the unloading process and freeze-thaw cycle each lead to improved creep deformation in rock samples, and radial deformation is more sensitive to rock deformation and failure; and (4) the creep rate of surrounding rock can be reduced by confining pressure. The peak creep rate increased with freeze-thaw time, as did the overall creep rate. Attention should be paid to deformation within a short period, and necessary supporting and protection measures should be taken to reduce creep.

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 236
Author(s):  
Xuebang Huang ◽  
Zizhao Zhang ◽  
Ruihua Hao ◽  
Zezhou Guo

Particle size grading impacts salt-frost heaving and dissolution collapse events of salinized soil on northwestern China’s arid and cold region highways. However, the influencing mechanisms remain unclear and the impact of varying particle size grading needs further investigation. Hence, this study focused on these effects and the number of freeze–thaw cycles on the characteristic changes in highway salinized soil in arid and cold regions. Three soil columns with different gradations were prepared to explore the gradation and the number of freeze–thaw cycle affects on salinized soil’s salt-frost heaving and dissolution collapse characteristics. The multi-functional physical simulation platform conducted multiple freeze–thaw cyclic tests in the laboratory. Test results confirmed significant and conclusive effects of gradation and the number of freeze–thaw cycles on salinized soil’s salt-frost heaving and dissolution collapse behaviors. Poorly graded salinized soil with high coarse particle content caused repeated freeze and thaw engineering hazards, significantly affecting salinized soil’s displacement and deformation behaviors during freezing. Contrarily, an increased range of fine particles more easily involved the characteristics of salinized soil during thawing. Therefore, the fourth freeze–thaw cycle was a crucial time node. After four freeze–thaw cycles, the displacement and deformation of original salinized soil and B-grade salinized soil samples (poorly graded with high fine particle content) tended to be stable. In contrast, the displacement and deformation of A-grade salinized soil samples (poorly graded with high coarse particle content) increased the growth rate. The present research results contribute to in-depth knowledge of the effects of gradation and freeze–thaw cycles on the characteristics of salinized soil in northwestern China, providing excellent referenced data support for the prevention and control of highway salinized soil failures and other engineering projects in arid and cold regions of northwest China.


2018 ◽  
Vol 22 (1) ◽  
pp. 53-57
Author(s):  
Haibo Jiang

Under freeze-thaw cycles, the relationship between rock microstructure deterioration and its macroscopic mechanical characteristics has drawn extensive attention from engineers. With the objective to incorporate freeze-thaw cycle experiment into headrace tunnel engineering, in the present study two groups of andesite rock samples in different states are tested under the conditions of the lowest freezing temperature of –40 ℃ and the thawing temperature of 20 ℃. Damage detection was performed by magnetic resonance imaging for the interior microstructure of rock samples subject to different freeze-thaw cycles, and the relationship between the sample mechanical properties and gradual deterioration of rock microstructures was discussed. The results demonstrate evident influence of freeze-thaw cycle on the damage and deterioration of internal pore structure in andesite, and the rock uniaxial compressive strength and elasticity modulus exhibit a decreasing trend with the increase of freeze-thaw cycles. After 40 cycles, the strength of naturally saturated rock samples decreases by 39.4% (equivalent to 69.4 MPa) and the elasticity modulus drops by 47.46% (equivalent to 3.27 GPa). For rock samples saturated by vacuum, 40 freeze-thaw cycles lead to a decrease of 36.86% (equivalent to 58.2 MPa) in rock strength and a drop of 44.85% (equivalent to 2.83 GPa) in elasticity modulus. Therefore, the test results quantitatively elucidate the substantial influence of freeze-thaw cycle on the damage and deterioration of internal structure in andesite.


2021 ◽  
Vol 11 (13) ◽  
pp. 5903
Author(s):  
Peng Xu ◽  
Yimin Wu ◽  
Le Huang ◽  
Kun Zhang

The linings of tunnels in cold regions with long service lives usually have cracks, with parts of the structure peeling and falling off, which seriously threatens the tunnel safety and operation. The unsaturated freeze–thaw cycle of concrete, which is the main cause of structural deterioration, has not received much research attention. During the service life of tunnels in cold regions, unsaturated freeze–thaw cycles deteriorate the quality of the concrete, and its degree presents a gradual distribution in the circumferential and longitudinal directions. An experiment system was adopted to simulate the distribution of the progressive deterioration of tunnel lining concrete. The test results of the temperature field of the model show the distribution law of freeze–thaw cycles, and the gradual deterioration of the lining concrete was realized. Then, the bearing capacity of the model was tested after the progressive deterioration. The results show that the ultimate load of the model decreases with an increase in the number of freeze–thaw cycles. Finally, a numerical simulation was carried out to discuss the influence of the gradual deterioration of the lining. The gradual deterioration of lining concrete will encourage the gradual development of cracks, leading to serious cracking of the lining structure and even block spalling. Through this study, we hope to provide useful information for the prevention and control of tunnel frost damage in cold regions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Longxiao Chen ◽  
Kesheng Li ◽  
Guilei Song ◽  
Deng Zhang ◽  
Chuanxiao Liu

AbstractRock deterioration under freeze–thaw cycles is a concern for in-service tunnel in cold regions. Previous studies focused on the change of rock mechanical properties under unidirectional stress, but the natural rock mass is under three dimensional stresses. This paper investigates influences of the number of freeze–thaw cycle on sandstone under low confining pressure. Twelve sandstone samples were tested subjected to triaxial compression. Additionally, the damage characteristics of sandstone internal microstructure were obtained by using acoustic emission (AE) and mercury intrusion porosimetry. Results indicated that the mechanical properties of sandstone were significantly reduced by freeze–thaw effect. Sandstone’ peak strength and elastic modulus were 7.28–37.96% and 6.38–40.87% less than for the control, respectively. The proportion of super-large pore and large pore in sandstone increased by 19.53–81.19%. We attributed the reduced sandstone’ mechanical properties to the degenerated sandstone microstructure, which, in turn, was associated with increased sandstone macropores. The macroscopic failure pattern of sandstone changed from splitting failure to shear failure with an increasing of freeze–thaw cycles. Moreover, the activity of AE signal increased at each stage, and the cumulative ringing count also showed upward trend with the increase of freeze–thaw number.


2021 ◽  
Vol 28 (3) ◽  
pp. 954-967
Author(s):  
Jie-lin Li ◽  
Long-yin Zhu ◽  
Ke-ping Zhou ◽  
Hui Chen ◽  
Le Gao ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Huren Rong ◽  
Jingyu Gu ◽  
Miren Rong ◽  
Hong Liu ◽  
Jiayao Zhang ◽  
...  

In order to study the damage characteristics of the yellow sandstone containing pores under the freeze-thaw cycle, the uniaxial compression test of saturated water-stained yellow sandstones with different freeze-thaw cycles was carried out by rock servo press, the microstructure was qualitatively analyzed by Zeiss 508 stereo microscope, and the microdamage mechanism was quantitatively studied by using specific surface area and pore size analyzer. The mechanism of weakening mechanical properties of single-hole yellow sandstone was expounded from the perspective of microstructure. The results show the following. (1) The number of freeze-thaw cycles and single-pore diameter have significant effects on the strength and elastic modulus of the yellow sandstone; the more the freeze-thaw cycles and the larger the pore size, the lower the strength of the yellow sandstone. (2) The damage modes of the yellow sandstone containing pores under the freeze-thaw cycle are divided into five types, and the yellow sandstone with pores is divided into two areas: the periphery of the hole and the distance from the hole; as the number of freeze-thaw cycles increases, different regions show different microscopic damage patterns. (3) The damage degree of yellow sandstone is different with freeze-thaw cycle and pore size. Freeze-thaw not only affects the mechanical properties of yellow sandstone but also accelerates the damage process of pores. (4) The damage of the yellow sandstone by freeze-thaw is logarithmic function, and the damage of the yellow sandstone is a power function. The damage equation of the yellow sandstone with pores under the freezing and thawing is a log-power function nonlinear change law and presents a good correlation.


2012 ◽  
Vol 455-456 ◽  
pp. 781-785
Author(s):  
Ping Lu ◽  
Xin Mao Li ◽  
Xue Qiang Ma ◽  
Wei Bo Huang

. This paper mainly studied the properties of PAE polyurea coated concrete under coactions of salt fog and freeze-thaw. After exposed salt fog conditions for 200d, T3, B2, F2 and TM four coated concrete relative dynamic elastic modulus have small changes, but different coated concrete variation amplitude is different. T3 coated concrete after 100 times of freeze-thaw cycle the relative dynamic elastic modulus began to drop, 200 times freeze-thaw cycle ends, relative dynamic elastic modulus variation is the largest, decrease rate is 95%, TM concrete during 200 times freeze-thaw cycle, relative dynamic elastic modulus almost no change, B2 concrete and F2 concrete the extent of change between coating T3 and TM. After 300 times the freeze-thaw cycle coated concrete didn't appear freeze-thaw damage phenomenon. Four kinds of coating concrete relative dynamic elastic modulus variation by large to small order: T3 coated concrete > B2 coated concrete >F2 coated concrete > TM coated concrete, concrete with the same 200d rule. Frost resistance order, by contrast, TM coated concrete > B2 coated concrete > F2 coated concrete > T3 coated concrete.


Sign in / Sign up

Export Citation Format

Share Document