scholarly journals miR-24-3p/KLF8 Signaling Axis Contributes to LUAD Metastasis by Regulating EMT

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Pengyu Jing ◽  
Nianlin Xie ◽  
Nan Zhao ◽  
Ximing Zhu ◽  
Pei Li ◽  
...  

Reprogramming of the tumor immune microenvironment is a salient feature during metastasis in LUAD. miR-24-3p and KLF8, which are key regulators of the tumor immune microenvironment, had been proved to show metastasis-promoting property in LUAD. However, whether miR-24-3p could regulate LUAD metastasis by targeting KLF8 remains unclear. This study explored the functions and mechanisms of miR-24-3p/KLF8 signaling in advanced LUAD. The expression level of miR-24-3p and KLF8 were tested in LUAD patients, and the corelation of miR-24-3p and KLF8 was evaluated. The interaction of miR-24-3p and KLF8 was demonstrated by luciferase reporter activity assay, in vitro migration and invasion studies, and in vivo metastatic studies. miR-24-3p level was downregulated in LUAD and negatively associated with KLF8 mRNA expression. miR-24-3p controls LUAD metastasis by directly targeting KLF8 and inducing Snail and E-cadherin expressions. Targeting the miR-24-3p/KLF8/EMT axis might be of great therapeutic value to advanced LUAD patients.

Author(s):  
Chenlong Song ◽  
Chongzhi Zhou

Abstract Background Homeobox A10 (HOXA10) belongs to the HOX gene family, which plays an essential role in embryonic development and tumor progression. We previously demonstrated that HOXA10 was significantly upregulated in gastric cancer (GC) and promoted GC cell proliferation. This study was designed to investigate the role of HOXA10 in GC metastasis and explore the underlying mechanism. Methods Immunohistochemistry (IHC) was used to evaluate the expression of HOXA10 in GC. In vitro cell migration and invasion assays as well as in vivo mice metastatic models were utilized to investigate the effects of HOXA10 on GC metastasis. GSEA, western blot, qRT-PCR and confocal immunofluorescence experiments preliminarily analyzed the relationship between HOXA10 and EMT. ChIP-qPCR, dual-luciferase reporter (DLR), co-immunoprecipitation (CoIP), colorimetric m6A assay and mice lung metastasis rescue models were performed to explore the mechanism by which HOXA10 accelerated the EMT process in GC. Results In this study, we demonstrated HOXA10 was upregulated in GC patients and the difference was even more pronounced in patients with lymph node metastasis (LNM) than without. Functionally, HOXA10 promoted migration and invasion of GC cells in vitro and accelerated lung metastasis in vivo. EMT was an important mechanism responsible for HOXA10-involved metastasis. Mechanistically, we revealed HOXA10 enriched in the TGFB2 promoter region, promoted transcription, increased secretion, thus triggered the activation of TGFβ/Smad signaling with subsequent enhancement of Smad2/3 nuclear expression. Moreover, HOXA10 upregulation elevated m6A level and METTL3 expression in GC cells possible by regulating the TGFB2/Smad pathway. CoIP and ChIP-qPCR experiments demonstrated that Smad proteins played an important role in mediating METTL3 expression. Furthermore, we found HOXA10 and METTL3 were clinically relevant, and METTL3 was responsible for the HOXA10-mediated EMT process by performing rescue experiments with western blot and in vivo mice lung metastatic models. Conclusions Our findings indicated the essential role of the HOXA10/TGFB2/Smad/METTL3 signaling axis in GC progression and metastasis.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ling Zhou ◽  
Xiao-li Xu

<b><i>Background:</i></b> Emerging research has demonstrated that long non-coding RNAs (lncRNAs) attach great importance to the progression of cervical cancer (CC). LncRNA ARAP1-AS1 was involved in the development of several cancers; however, its role in CC is far from being elucidated. <b><i>Methods:</i></b> Real-time PCR (RT-PCR) was employed to detect ARAP1-AS1 and miR-149-3p expression in CC samples. CC cell lines (HeLa and C33A cells) were regarded as the cell models. The biological effect of ARAP1-AS1 on cancer cells was measured using CCK-8 assay, colony formation assay, flow cytometry, Transwell assay and wound healing assay in vitro, and subcutaneous xenotransplanted tumor model and tail vein injection model in vivo. Furthermore, interactions between ARAP1-AS1 and miR-149-3p, miR-149-3p and POU class 2 homeobox 2 (POU2F2) were determined by bioinformatics analysis, qRT-PCR, Western blot, luciferase reporter and RNA immunoprecipitation assay, respectively. <b><i>Results:</i></b> The expression of ARAP1-AS1 was enhanced in CC samples, while miR-149-3p was markedly suppressed. Additionally, ARAP1-AS1 overexpression enhanced the viability, migration, and invasion of CC cells. ARAP1-AS1 downregulated miR-149-3p via sponging it. ARAP1-AS1 and miR-149-3p exhibited a negative correlation in CC samples. On the other hand, ARAP1-AS1 enhanced the expression of POU2F2, which was validated as a target gene of miR-149-3p. <b><i>Conclusion:</i></b> ARAP1-AS1 was abnormally upregulated in CC tissues and indirectly modulated the POU2F2 expression via reducing miR-149-3p expression. Our study identified a novel axis, ARAP1-AS1/miR-149-3p/POU2F2, in CC tumorigenesis.


Author(s):  
Jiongwei Pan ◽  
Gang Huang ◽  
Zhangyong Yin ◽  
Xiaoping Cai ◽  
Enhui Gong ◽  
...  

AbstractSignificantly high-expressed circFLNA has been found in various cancer cell lines, but not in lung cancer. Therefore, this study aimed to explore the role of circFLNA in the progression of lung cancer. The target gene of circFLNA was determined by bioinformatics and luciferase reporter assay. Viability, proliferation, migration, and invasion of the transfected cells were detected by CCK-8, colony formation, wound-healing, and transwell assays, respectively. A mouse subcutaneous xenotransplanted tumor model was established, and the expressions of circFLNA, miR-486-3p, XRCC1, CYP1A1, and related genes in the cancer cells and tissues were detected by RT-qPCR, Western blot, or immunohistochemistry. The current study found that miR-486-3p was low-expressed in lung cancer. MiR-486-3p, which has been found to target XRCC1 and CYP1A1, was regulated by circFLNA. CircFLNA was located in the cytoplasm and had a high expression in lung cancer cells. Cancer cell viability, proliferation, migration, and invasion were promoted by overexpressed circFLNA, XRCC1, and CYP1A1 but inhibited by miR-486-3p mimic and circFLNA knockdown. The weight of the xenotransplanted tumor was increased by circFLNA overexpression yet reduced by miR-486-3p mimic. Furthermore, miR-486-3p mimic reversed the effect of circFLNA overexpression on promoting lung cancer cells and tumors and regulating the expressions of miR-486-3p, XRCC1, CYP1A1, and metastasis/apoptosis/proliferation-related factors. However, overexpressed XRCC1 and CYP1A1 reversed the inhibitory effect of miR-486-3p mimic on cancer cells and tumors. In conclusion, circFLNA acted as a sponge of miR-486-3p to promote the proliferation, migration, and invasion of lung cancer cells in vitro and in vivo by regulating XRCC1 and CYP1A1.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Jingpeng Wang ◽  
Shuyuan Li ◽  
Gaofeng Zhang ◽  
Huihua Han

Abstract Background Sevoflurane (Sev), a commonly used volatile anesthetic, has been reported to inhibit the process of colorectal cancer (CRC). Circular RNAs (circRNAs) are revealed to participate in the pathogenesis of CRC. This study aims to reveal the mechanism of hsa_circ_0000231 in Sev-mediated CRC progression. Methods The expression of hsa_circ_0000231 and microRNA-622 (miR-622) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein level was determined by western blot analysis. Cell proliferation was investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell colony formation and DNA content quantitation assays. Cell apoptosis was detected by Annexin V-fluorescein isothiocyanate and propidium iodide double staining and caspase 3 activity assays. Cell migration and invasion were investigated by wound-healing and transwell invasion assays, respectively. The putative relationship between hsa_circ_0000231 and miR-622 was predicted by circular RNA Interactome online database, and identified by dual-luciferase reporter and RNA immunoprecipitation assays. The impacts of hsa_circ_0000231 on Sev-mediated tumor formation in vivo were presented by in vivo assay. Results Hsa_circ_0000231 expression was upregulated, while miR-622 was downregulated in CRC tissues and cells compared with control groups. Sev treatment decreased hsa_circ_0000231 expression, but increased miR-622 expression in CRC cells. Sev treatment suppressed cell proliferation, migration and invasion, and induced cell apoptosis. Hsa_circ_0000231 overexpression restored Sev-mediated CRC progression in vitro. Additionally, hsa_circ_0000231 acted as a sponge of miR-622, and miR-622 inhibitors reversed the impacts of hsa_circ_0000231 silencing on CRC process. Furthermore, Sev treatment inhibited tumor growth by regulating hsa_circ_0000231 in vivo. Conclusion Hsa_circ_0000231 attenuated Sev-aroused repression impacts on CRC development by sponging miR-622. This findings may provide an appropriate anesthetic protocol for CRC sufferers undergoing surgery.


2021 ◽  
pp. 1-16
Author(s):  
Yang Wang ◽  
Bo He ◽  
Yan Dong ◽  
Gong-Jin He ◽  
Xiao-Wei Qi ◽  
...  

BACKGROUND: The prognosis of lung cancer patients is poor without useful prognostic and diagnostic biomarker. To search for novel prognostic and diagnostic markers, we previously found homeobox-A13 (HOXA13) as a promising candidate in lung cancer. OBJECTIVE: To determine the precisely clinical feature, prognostic and diagnostic value, possible role and mechanism of HOXA13. METHODS: Gene-expression was explored by real-time quantitative-PCR, western-blot and tissue-microarray. The associations were analyzed by Chi-square test, Kaplan-Meier and Cox-regression. The roles and mechanisms were evaluated by MTS, EdU, transwell, xenograft tumor and luciferase-reporter assays. RESULTS: HOXA13 expression is increased in tumors, and correlated with age of patients. HOXA13 expression is associated with unfavorable overall survival and relapse-free survival of patients in four cohorts. Interestingly, HOXA13 has different prognostic significance in adenocarcinoma (ADC) and squamous-cell carcinoma (SCC), and is a sex- and smoke-related prognostic factor only in ADC. Importantly, HOXA13 can serve as a diagnostic biomarker for lung cancer, especially for SCC. HOXA13 can promote cancer-cell proliferation, migration and invasion in vitro, and facilitate tumorigenicity and tumor metastasis in vivo. HOXA13 acts the oncogenic roles on tumor growth and metastasis by regulating P53 and Wnt/β-catenin signaling activities in lung cancer. CONCLUSIONS: HOXA13 is a new prognostic and diagnostic biomarker associated with P53 and Wnt/β-catenin signaling pathways.


Cancers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 491 ◽  
Author(s):  
Heng-Wei Liu ◽  
Yu-Kai Su ◽  
Oluwaseun Bamodu ◽  
Dueng-Yuan Hueng ◽  
Wei-Hwa Lee ◽  
...  

Background: Glioblastoma (GBM), a malignant form of glioma, is characterized by resistance to therapy and poor prognosis. Accumulating evidence shows that the initiation, propagation, and recurrence of GBM is attributable to the presence of GBM stem cells (GBM-CSCs). Experimental approach: Herein, we investigated the effect of 4-Acetylantroquinonol B (4-AAQB), a bioactive isolate of Antrodia cinnamomea, on GBM cell viability, oncogenic, and CSCs-like activities. Results: We observed that aberrant expression of catenin is characteristic of GBM, compared to other glioma types (p = 0.0001, log-rank test = 475.2), and correlates with poor prognosis of GBM patients. Lower grade glioma and glioblastoma patients (n = 1152) with low catenin expression had 25% and 21.5% better overall survival than those with high catenin expression at the 5 and 10-year time-points, respectively (p = 3.57e-11, log-rank test = 43.8). Immunohistochemistry demonstrated that compared with adjacent non-tumor brain tissue, primary and recurrent GBM exhibited enhanced catenin expression (~10-fold, p < 0.001). Western blot analysis showed that 4-AAQB significantly downregulated β-catenin and dysregulated the catenin/LEF1/Stat3 signaling axis in U87MG and DBTRG-05MG cells, dose-dependently. 4-AAQB–induced downregulation of catenin positively correlated with reduced Sox2 and Oct4 nuclear expression in the cells. Furthermore, 4-AAQB markedly reduced the viability of U87MG and DBTRG-05MG cells with 48 h IC50 of 9.2 M and 12.5 M, respectively, effectively inhibited the nuclear catenin, limited the migration and invasion of GBM cells, with concurrent downregulation of catenin, vimentin, and slug; similarly, colony and tumorsphere formation was significantly attenuated with reduced expression of c-Myc and KLF4 proteins. Conclusions: Summarily, we show for the first time that 4-AAQB suppresses the tumor-promoting catenin/LEF1/Stat3 signaling, and inhibited CSCs-induced oncogenic activities in GBM in vitro, with in vivo validation; thus projecting 4-AAQB as a potent therapeutic agent for anti-GBM target therapy.


2021 ◽  
Author(s):  
zhengtuan guo ◽  
qiang yv ◽  
chunlin miao ◽  
wenan ge ◽  
peng li

Wilms tumor is the most common type of renal tumor in children. MicroRNAs (miRNA) are small non-coding RNAs that play crucial regulatory roles in tumorigenesis. We aimed to study the expression profile and function of miR-27a-5p in Wilms tumor. MiR-27a-5p expression was downregulated in human Wilms tumor tissues. Functionally, overexpression of miR-27a-5p promoted cell apoptosis of Wilms tumor cells. Furthermore, upregulated miR-27a-5p delayed xenograft Wilms tumor tumorigenesis in vivo. Bioinformatics analysis predicted miR-27-5p directly targeted to the 3’-untranslated region (UTR) of PBOV1 and luciferase reporter assay confirmed the interaction between miR-27a-5p and PBOV1. The function of PBOV1 in Wilms tumor was evaluated in vitro and knockdown of PBOV1 dampened cell migration. In addition, overexpression of PBOV1 antagonized the tumor-suppressive effect of miR-27a-5p in Wilms tumor cells. Collectively, our findings reveal the regulatory axis of miR-27-5p/PBOV1 in Wilms tumor and miR-27a-5p might serve as a novel therapeutic target in Wilms tumor.


2021 ◽  
Author(s):  
Shenshuo Gao ◽  
Zhikai Zhang ◽  
Xubin Wang ◽  
Yan Ma ◽  
Chensheng Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignancies, and more and more evdiences show that the pathogenesis is regulated by various miRNAs.In this study, we investigated the role of miR-875 in GC. Methods:The expression of miR-875-5p was detected in human GC specimens and cell lines by miRNA RT-PCR. The effect of miR-875-5p on GC proliferation was determined by CCK-8 proliferation assay and EDU assay. Migration and invasion were examined by transwell migration and invasion assay and wound healing assay. The interaction between miR-875-5p and its target gene USF2 was verified by a dual luciferase reporter assay. The effects of miR-875-5p in vivo were studied in xenograft nude mice models.Related proteins were detected by Western blot.Results:The results showed that miR-875-5p inhibited the proliferation, migration and invasion of gastric cancer cells in vitro, and inhibited tumorigenesis in vivo. USF2 proved to be a direct target of miR-875-5p. Knockdown of USF2 partially counteracts the effects of miR-875-5p inhibitors.Overexpression of miR-875-5p can inhibit proliferation, migration, and invasion through the TGF-β signaling pathway by down-regulation of USF2 in GC, providing a new research direction for the diagnosis and targeted therapy of GC.Conclusions: MiR-875-5pcan inhibited the progression of GC by directly targeting USF2 and negatively regulating TGF-β signaling pathway.In the future, miR-875-5p is expected to be used as a potential therapeutic target for GC therapy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaodan Wu ◽  
Yihui Fan ◽  
Yupeng Liu ◽  
Biao Shen ◽  
Haimin Lu ◽  
...  

Long non-coding RNAs (lncRNAs) have been shown to play important roles in human cancers, including esophageal squamous cell carcinoma (ESCC). In the current study, we identified CCAT2 as a relevant lncRNA and investigated its role in the progression of ESCC. RT-qPCR was adopted to detect CCAT2 expression in collected clinical samples, ESCC cell lines, and a normal cell line. We tested the correlation between CCAT2 expression and the prognosis of ESCC. RT-qPCR or immunoblotting was adopted to detect the expression of relevant factors in ESCC tissues or cells. Cell proliferation, apoptosis, migration, and invasion were examined by colony formation assay, flow cytometry, scratch assay, and Transwell assay, respectively, while subcutaneous tumorigenesis in nude mice was adopted to examine the role of CCAT2 in tumorigenesis of ESCC cells in vivo. Bioinformatics analysis, dual luciferase reporter assay, and RIP were conducted for the target relationship profiling. Me-RIP was adopted to detect m6A modification level of TK1 in ESCC tissues or cells. Upregulated CCAT2, IGF2BP2, and TK1 expression and inhibited miR-200b expression were observed in ESCC cells and tissues. CCAT2 bound to miR-200b and reduced its expression, leading to upregulated IGF2BP2 expression. IGF2BP2 improved TK1 mRNA stability to enhance its expression by recognizing its m6A modification. CCAT2 promoted the migration and invasion of ESCC cells in vitro, and tumorigenesis in vivo by upregulating TK1 expression, while overexpression of miR-200b reversed these effects of CCAT2. Overall, this study suggests that CCAT2 competitively binds to miR-200b to alleviate its inhibitory effects on IGF2BP2 expression, resulting in elevated TK1 expression, and an ensuing promotion of the development of ESCC.


2021 ◽  
Author(s):  
Feng Ying Zhang ◽  
Xia Li ◽  
Ting Ting Huang ◽  
Mei Ling Xiang ◽  
Lin Lin Sun ◽  
...  

Abstract Background Long intergenic non-coding RNA 00839 (LINC00839) has been verified as a cancer-promoting gene in malignancies. However, the significance of LINC00839 in nasopharyngeal carcinoma (NPC) has yet to be elaborated, as well as its underlying mechanism.Methods LINC00839 and miR-454-3p relative expression levels in NPC cells were examined by qRT-PCR. The growth of cells was examined by CCK-8 and colony formation assays. Cell migration and invasion were examined by wound healing and Transwell experiment, respectively. The binding sequence of LINC00839 and miR-454-3p was confirmed by the luciferase reporter gene experiment. The regulatory function of LINC00839 and miR-454-3p on c-Met was investigated by western blot.Results Here, we revealed that LINC00839 was elevated in NPC. Both LINC00839 knockdown and upregulation of miR-454-3p suppressed NPC cells proliferation, invasive capacity and EMT in vitro. Besides, LINC00839 was validated as a miR-454-3p “sponge”, and upregulation of LINC00839 could reverse miR-454-3p-mediated functions in NPC C666-1 and SUNE-1 cells. Furthermore, c-Met was determined to be targeted by miR-454-3p. Notably, c-Met was downregulated by LINC00839 knockdown through sponging miR-454-3p. In vivo, LINC00839 knockdown resulted in a slower tumor growth.Conclusions Altogether, knockdown of LINC00839 inhibits the aggressive properties of NPC cells via sponging miR-454-3p and regulating c-Met.


Sign in / Sign up

Export Citation Format

Share Document