scholarly journals Influence of the Geometric Parameters on the Densification Onset Strain of Double-Walled Honeycomb Aluminum under Out-of-Plane Compression

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Jian Wang ◽  
Ying Cao

As a material widely used in various lightweight structures and energy absorbing devices, honeycomb aluminum has high specific stiffness and specific strength, excellent energy absorption capacity, and vibration damping. When evaluating the energy absorption of honeycomb aluminum under out-of-plane compression, platform stress and onset strain of densification have become important parameters studied by many scholars. In this work, based on the theory that the energy absorption efficiency determines the densification onset strain, the influence of the geometric design parameters of honeycomb aluminum on the onset strain of out-of-plane quasi-static compression densification is studied. Based on the results of the finite element analysis, the relationship between the onset strain and the geometric design parameters including cell size length and wall thickness is fitted by the least squares method. A linear relationship that the onset strain of densification will decrease with the increase of the reciprocal of cell side length and the onset strain of densification will decrease with the increase of the wall thickness is exhibited in the conclusion. This work can provide a theoretical basis for the calculation of the platform stress in the plastic deformation stage.

2015 ◽  
Vol 778 ◽  
pp. 18-23
Author(s):  
Jing Hui Zhao ◽  
Jian Feng Wang ◽  
Tao Liu ◽  
Na Yang ◽  
Wen Jie Duan ◽  
...  

Aluminum honeycomb is a lightweight material with high strength and strong capacity of energy absorption. In order to research energy absorption characteristic of aluminum honeycomb material, quasi-static and dynamic out-of-plane compression experiments are carried out on a double-layer aluminum honeycomb impact attenuator of one FSAE racing car. Plateau stress (PS), specific load (SL), mass specific energy absorption (MSEA), volume specific energy absorption (VSEA) and other parameters of the tested aluminum honeycomb under both quasi-static and dynamic impact conditions are analyzed. The results show that the tested aluminum honeycomb impact attenuator has good energy absorption capacity to meet the collision requirements. Furthermore, under the condition of dynamic impact, the energy absorption capacity of this honeycomb improves compared with that under the condition of quasi static compression.


2020 ◽  
pp. 002199832096053
Author(s):  
Ali Imran ◽  
Shijie Qi ◽  
Pengcheng Shi ◽  
Muhammad Imran ◽  
Dong Liu ◽  
...  

The structural weight of an electric vehicle and its material’s recyclability are the important parameters to optimize the overall cost as well as the mileage of a vehicle. Self-reinforced polymer composites (SRCs) can be potentially used for these applications because of their 100% recyclability as compared with multicomponent traditional epoxy matrix based fibre reinforced composites. In case of SRCs the fibres and matrix are synthesized from same family of polymers. An optimization study is required based on integration of material and structural parameters to reduced overall weight of the vehicles while keeping the strength up to the safety mark. We fabricated self-reinforced polypropylene (SrPP) sandwich structures through an ex-situ consolidation based fabrication method. An FEA based study was conducted to optimize the effect of core corrugation angle of sandwiched structures on out of plane compressive strength and flexural strength of SrPP sandwiched beams. The finite element study was preferred in order to save the experimental cost. Beams with 60° core corrugation angle have optimal flexural properties. The sandwiched panels with 45° corrugated core exhibited optimal stiffness while maximum energy absorption capacity was shown with 60° corrugated core sandwiched structures.


Author(s):  
Huineng Wang ◽  
Yanfeng Guo ◽  
Yungang Fu ◽  
Dan Li

This study introduces the opinion of the corrugation hierarchy to develop the second-order corrugation paperboard, and explore the deformation characteristics, yield strength, and energy absorbing capacity under out-of-plane static evenly compression loading by experimental and analytical approaches. On the basis of the inclined-straight strut elements of corrugation unit and plastic hinge lines, the yield and crushing strengths of corrugation unit were analyzed. This study shows that as the compressive stress increases, the second-order corrugation core layer is firstly crushed, and the first-order corrugation structures gradually compacted until the failure of entire structure. The corrugation type has an obvious influence on the yield strength of the corrugation sandwich panel, and the yield strength of B-flute corrugation sandwich panel is wholly higher than that of the C-flute structure. At the same compression rate, the flute type has a significant impact on energy absorption, and the C-flute second-order corrugation sandwich panel has better bearing capacity than the B-flute structure. The second-order corrugation sandwich panel has a better bearing capacity than the first-order structure. The static compression rate has little effect on the yield strength and deformation mode. However, with the increase of the static compression rate, the corrugation sandwich panel has a better cushioning energy absorption and material utilization rate.


Author(s):  
H Geramizadeh ◽  
S Dariushi ◽  
S Jedari Salami

The current study focuses on designing the optimal three-dimensional printed sandwich structures. The main goal is to improve the energy absorption capacity of the out-of-plane honeycomb sandwich beam. The novel Beta VI and Alpha VI were designed in order to achieve this aim. In the Beta VI, the connecting curves (splines) were used instead of the four diagonal walls, while the two vertical walls remained unchanged. The Alpha VI is a step forward on the Beta VI, which was promoted by filleting all angles among the vertical walls, created arcs, and face sheets. The two offered sandwich structures have not hitherto been provided in the literature. All models were designed and simulated by the CATIA and ABAQUS, respectively. The three-dimensional printer fabricated the samples by fused deposition modeling technique. The material properties were determined under tensile, compression, and three-point bending tests. The results are carried out by two methods based on experimental tests and finite element analyses that confirmed each other. The achievements provide novel insights into the determination of the adequate number of unit cells and demonstrate the energy absorption capacity of the Beta VI and Alpha VI are 23.7% and 53.9%, respectively, higher than the out-of-plane honeycomb sandwich structures.


Author(s):  
Ramin Hamzehei ◽  
Ali Zolfagharian ◽  
Soheil Dariushi ◽  
Mahdi Bodaghi

Abstract This study aims at introducing a number of two-dimensional (2D) re-entrant based zero Poisson’s ratio (ZPR) graded metamaterials for energy absorption applications. The metamaterials’ designs are inspired by the 2D image of a DNA molecule. This inspiration indicates how a re-entrant unit cell must be patterned along with the two orthogonal directions to obtain a ZPR behavior. Also, how much metamaterials’ energy absorption capacity can be enhanced by taking slots and horizontal beams into account with the inspiration of the DNA molecule’s base pairs. The ZPR metamaterials comprise multi-stiffness unit cells, so-called soft and stiff re-entrant unit cells. The variability in unit cells’ stiffness is caused by the specific design of the unit cells. A finite element analysis (FEA) is employed to simulate the deformation patterns of the ZPRs. Following that, meta-structures are fabricated with 3D printing of TPU as hyperelastic materials to validate the FEA results. A good correlation is observed between FEA and experimental results. The experimental and numerical results show that due to the presence of multi-stiffness re-entrant unit cells, the deformation mechanisms and the unit cells’ densifications are adjustable under quasi-static compression. Also, the structure designed based on the DNA molecule’s base pairs, so-called structure F''', exhibits the highest energy absorption capacity. Apart from the diversity in metamaterial unit cells’ designs, the effect of multi-thickness cell walls is also evaluated. The results show that the diversity in cell wall thicknesses leads to boosting the energy absorption capacity. In this regard, the energy absorption capacity of structure ‘E’ enhances by up to 33% than that of its counterpart with constant cell wall thicknesses. Finally, a comparison in terms of energy absorption capacity and stability between the newly designed ZPRs, traditional ZPRs, and auxetic metamaterial is performed, approving the superiority of the newly designed ZPR metamaterials over both traditional ZPRs and auxetic metamaterials.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 175
Author(s):  
Wenjing Shen ◽  
Hongyuan Zhou ◽  
Xuejian Zhang ◽  
Xiaojuan Wang

Foam concrete exhibits long stress plateau with increasing strain subjected to compression and absorbs a considerable amount of energy, making them promising for building and structure protection. In the present study, hexagonal concrete honeycombs are employed to approximately represent foam concrete, whose response and energy absorption subjected to dynamic in-plane compression are investigated with smooth particle hydrodynamics method. The response modes under low to high velocity crushing are numerically investigated, with which the critical velocity separating quasi-static response and progressive collapse mode is determined. Furthermore, the dynamic energy absorption capacity is examined and discussed.


Author(s):  
Suchao Xie ◽  
Xuanjin Du ◽  
Hui Zhou ◽  
Da Wang ◽  
Zhejun Feng

In this study, the crashworthiness of a subway train was assessed by establishing a finite element model for the first three carriages of the train and the track using the Hypermesh software. By utilising the *MAT_HONEYCOMB material model, a honeycomb in an anti-climbing energy-absorbing device was simulated. Moreover, the process of a subway train – travelling at a speed of 25 km/h – colliding with another identical train in a stationary and non-braking state was simulated by employing the finite element analysis software Hypermesh and LS-DYNA. The process of simulation analysis was divided into two parts: (1) analysis of the anti-climbing energy-absorbing devices under static compression for the investigation of energy absorption and (2) collision analysis of the whole train. The contributions of the proposed energy-absorbing structure – at the end of driver’s cab, the coupler and draft gears on each section – to the overall energy absorption in a train collision were calculated. Furthermore, based on the EN15227 standard, the crashworthiness of the train with respect to the survival space for occupants, train acceleration and uplift of wheels relative to the track was evaluated. The coupler of the first carriage fails in a collision at 25 km/h, and the coupler and draft gear are the main energy-absorbing devices. *MAT_HONEYCOMB was used to define the honeycomb materials in anti-climbing energy-absorbing devices and could simulate the mechanical performance thereof. The crashworthiness of the train meets the relevant standard requirements.


Sign in / Sign up

Export Citation Format

Share Document