scholarly journals Effect of Superplasticizer and Wetting Agent on Volumetric and Mechanical Properties of Cold Recycled Mixture with Asphalt Emulsion

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Wenting Yang ◽  
Jian Ouyang ◽  
Yan Meng ◽  
Taixiong Tang ◽  
Jijiang Chen ◽  
...  

Cold recycled mixture with asphalt emulsion (CRME) has gained more appreciation due to its environmental and economical advantages. Surfactant greatly affects the interaction between asphalt emulsion and cement, which can greatly affect the volumetric and mechanical properties of CRME. If the surfactant can greatly improve the volumetric and mechanical properties of CRME, that could be of great attraction. In this study, a polycarboxylate-based superplasticizer and wetting agent (DN500, polymers containing high-pigment groups) were employed to improve the volumetric and mechanical properties of CRME. Results indicate that the addition of superplasticizer and DN500 can reduce the void content of CRME and increase the indirect tensile strength (ITS) and stiffness modulus as well as critical strain energy density (CSED) of CRME. Besides, the failure strain of CRME is also increased by adding superplasticizer and DN500. This phenomenon is probably due to that superplasticizer can decrease the viscosity of cement asphalt emulsion paste (CAEP) and help to form a better asphalt film, and DN500 can moderately decrease the viscosity of CAEP and increase the wetting ability of asphalt emulsion as a wetting agent. CRME with superplasticizer has the best mechanical properties among all CRMEs. Compared to reference CRME, the ITS, stiffness modulus, and CSED of CRME with superplasticizer can increase by 33.7%, 8.0%, and 17.5% at the optimum water content, respectively. It is recommended to improve the volumetric and mechanical properties of CRME by adding superplasticizer.

2018 ◽  
Vol 9 (1) ◽  
pp. 60 ◽  
Author(s):  
Wensheng Wang ◽  
Yongchun Cheng ◽  
Guirong Ma ◽  
Guojin Tan ◽  
Xun Sun ◽  
...  

The main distresses of asphalt pavements in seasonally frozen regions are due to the effects of water action, freeze-thaw cycles, and so on. Basalt fiber, as an eco-friendly mineral fiber with high mechanical performance, has been adopted to reinforce asphalt mixture in order to improve its mechanical properties. This study investigated the freeze-thaw damage characteristics of asphalt mixtures reinforced with eco-friendly basalt fiber by volume and mechanical properties—air voids, splitting tensile strength, and indirect tensile stiffness modulus tests. Test results indicated that asphalt mixtures reinforced with eco-friendly basalt fiber had better mechanical properties (i.e., splitting tensile strength and indirect tensile stiffness modulus) before and after freeze-thaw cycles. Furthermore, this study developed logistic damage models of asphalt mixtures in terms of the damage characteristics, and found that adding basalt fiber could significantly reduce the damage degree by about 25%, and slow down the damage grow rate by about 45% compared with control group without basalt fiber. Moreover, multi-variable grey models (GM) (1,N) were established for modelling the damage characteristics of asphalt mixtures under the effect of freeze-thaw cycles. GM (1,3) was proven as an effective prediction model to perform better in prediction accuracy compared to GM (1,2).


2017 ◽  
Vol 23 (8) ◽  
pp. 1013-1020 ◽  
Author(s):  
Baha Vural KÖK ◽  
Mehmet YILMAZ ◽  
Yunus ERKUS

Hot mix asphalt needs to be developed to resist particular permanent deformations like rutting and thermal cracking due to increased traffic volumes and vehicle loads. Additives such as carbon black, graphite, carbon fibers are used in the mixture or the binder for improving the mechanical features of asphalt. In this article, the effects of graphite used for developing the mechanical properties of asphalt have been investigated in mixtures tests. Therefore, Marshall stability, indirect tensile stiffness modulus and indirect tensile fatigue tests were performed to bituminous mixtures modified with three different proportions of graphite by weight of bitumen. Stone mastic asphalt mixtures which were manufactured with pure and modified bitumen were aged in different time intervals in the oven. In conclusion, it has defined that Marshall stability values have declined. It has been determined that there is no significant difference in the time-dependent deformation behavior of the original and aged samples in pure and different graphite content although the stiffness modulus and load repeat number of the samples increased with the rise of the aging time. These results shown that graphite generally used for improving the thermal properties in literature were also determined to contribute to mechanical properties of mixtures.


2017 ◽  
Vol 16 (3) ◽  
pp. 053-063
Author(s):  
Jerzy Kukiełka

Cement matrices are known from concrete testing. Cement-asphalt matrices made of cement and asphalt emulsion are used in mineral-cement-emulsion mixes (MCEM). The matric strength in MCEM mixtures has not been studied so far. Cement-asphalt matrices with 0/1 mm rubber powder are proposed by the author for use in the MCEM [3, 26]. In this paper the results of the investigation of the mechanical properties of matrices are presented for comparative purposes and for the preliminary evaluation of their suitability for MCEM. The following tests were made: indirect tensile strength, bending strength, compressive strength and rigidity modules in NAT and 4 PB-PR.


2015 ◽  
Vol 63 (1) ◽  
pp. 97-105 ◽  
Author(s):  
M. Iwański ◽  
A. Chomicz-Kowalska

Abstract This paper focuses on evaluation of two laboratory-based methods of compaction of foamed bitumen and bitumen emulsion mixes: impact compaction with a Marshall hammer and static compaction using a hydraulic press. The investigated compaction methods were assessed in terms of their impact on the physical and mechanical properties of produced laboratory specimens, including: air void content, indirect tensile strength before and after conditioning in water (ITSdry, ITSwet), tensile strength ratio (TSR), and indirect tensile stiffness modulus (ITSM) at 0°C, 10°C and 20°C. The statically compacted specimens attained higher levels of mechanical properties and resistance to moisture damage, which was associated with a lower content of air voids in the specimens formed using a hydraulic press. Authors present a calculation showing that a mechanistic design based on the laboratory static press compaction method leads to overestimation of fatigue cracking resistance of the road base.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


2010 ◽  
Vol 123-125 ◽  
pp. 1031-1034 ◽  
Author(s):  
Sandhyarani Biswas ◽  
Alok Satapathy ◽  
Amar Patnaik

In order to obtain the favoured material properties for a particular application, it is important to know how the material performance changes with the filler content under given loading conditions. In this study, a series of bamboo fiber reinforced epoxy composites are fabricated using conventional filler (aluminium oxide (Al2O3) and silicon carbide (SiC) and industrial wastes (red mud and copper slag) particles as filler materials. By incorporating the chosen particulate fillers into the bamboo-fiber reinforced epoxy, synergistic effects, as expected are achieved in the form of modified mechanical properties. Inclusion of fiber in neat epoxy improved the load bearing capacity (tensile strength) and the ability to withstand bending (flexural strength) of the composites. But with the incorporation of particulate fillers, the tensile strengths of the composites are found to be decreasing in most of the cases. Among the particulate filled bamboo-epoxy composites, least value of void content are recorded for composites with silicon carbide filling and for the composites with glass fiber reinforcement minimum void fraction is noted for red mud filling. The effects of these four different ceramics on the mechanical properties of bamboo- epoxy composites are investigated and the conclusions drawn from the above investigation are discussed.


2012 ◽  
Vol 06 ◽  
pp. 646-651 ◽  
Author(s):  
Wen Ma ◽  
Fushun Liu

Voids are inevitable in the fabrication of fiber reinforced composites and have a detrimental impact on mechanical properties of composites. Different void contents were acquired by applying different vacuum bag pressures. Ultrasonic inspection and ablation density method were adopted to measure the ultrasonic characteristic parameters and average porosity, the characterization of voids' distribution, shape and size were carried out through metallographic analysis. Effects of void content on the tensile, flexural and interlaminar shear properties and the ultrasonic characteristic parameters were discussed. The results showed that, as vacuum bag pressure went from -50kPa to -98kPa, the voids content decreased from 4.36 to 0.34, the ultrasonic attenuation coefficient decreased, but the mechanical strengths all increased.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7060
Author(s):  
Mohammad Alharthai ◽  
Qing Lu ◽  
Ahmed Elnihum ◽  
Asad Elmagarhe

This study investigates the substitution of conventional aggregate with a Florida washed shell in open-graded asphalt mixtures and evaluates the optimal substitution percentage in aggregate gradations of various nominal maximum aggregate sizes (NMASs) (i.e., 4.75, 9.5, and 12.5 mm). Laboratory experiments were performed on open-graded asphalt mixture specimens with the coarse aggregate of sizes between 2.36 and 12.5 mm being replaced by the Florida washed shell at various percentages (0, 15, 30, 45, and 100%). Specimen properties relevant to the performance of open-graded asphalt mixtures in the field were tested, evaluated, and compared. Specifically, a Marshall stability test, Cantabro test, indirect tensile strength test, air void content test, and permeability test were conducted to evaluate the strength, resistance to raveling, cracking resistance, void content, and permeability of open-graded asphalt mixtures. The results show that there is no significant difference in the Marshall stability and indirect tensile strength when the coarse aggregates are replaced with Florida washed shell. This study also found that the optimum percentages of Florida washed shell in open-graded asphalt mixture were 15, 30, and 45% for 12.5, 9.5, and 4.75 mm NMAS gradations, respectively.


Sign in / Sign up

Export Citation Format

Share Document