scholarly journals EGFR-AS1 Promotes Bladder Cancer Progression by Upregulating EGFR

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Anbang Wang ◽  
Aimin Jiang ◽  
Xinxin Gan ◽  
Zheng Wang ◽  
Jinming Huang ◽  
...  

Long noncoding RNAs play an essential role in bladder cancer progression. The role of long noncoding RNA EGFR-AS1 in bladder cancer needs further study. We used clinical specimens to analyze the relationship between EGFR-AS1 and bladder cancer patients’ characteristics. The functional experiments and mechanism studies were performed using qRT-PCR, transwell assay, survival analysis, and correlation analysis. We found that high expression of EGFR-AS1 was nearly related to aggressive bladder cancer and indicated poor prognosis for patients. The functional experiments in vivo and in vitro suggested that EGFR-AS1 promoted the proliferation and invasion of bladder cancer cells. Mechanically, EGFR-AS1 promoted the expression of EGFR by inhibiting the degradation of EGFR mRNA, thereby promoting the metastasis of bladder cancer. In addition, EGFR-AS1/EGFR may be involved in the immune-related pathways of bladder cancer. These studies indicate that the EGFR-AS1/EGFR pathway may be a potential diagnostic marker and therapeutic target for bladder cancer.

2021 ◽  
Vol 11 ◽  
Author(s):  
Jie Wang ◽  
Changjiang Lei ◽  
Pingping Shi ◽  
Huaixiang Teng ◽  
Lixiang Lu ◽  
...  

Dysregulation of long noncoding RNA (lncRNA) is implicated in the initiation and progression of various tumors, including endometrial cancer (EC). However, the mechanism of lncRNAs in EC tumorigenesis and progression remains largely unexplored. In this work, we identified a novel lncRNA DC-STAMP domain-containing 1-antisense 1 (DCST1-AS1), which is highly upregulated and correlated with poor survival in EC patients. Overexpression of DCST1-AS1 significantly enhanced EC cell proliferation, colony formation, migration, and invasion in vitro and promoted tumor growth of EC in vivo. Mechanistically, DCST1-AS1 mediated EC progression by inducing the expression of homeobox B5 (HOXB5) and cell adhesion molecule 1 (CADM1), via acting as a competing endogenous RNA for microRNA-665 (miR-665) and microRNA-873-5p (miR-873-5p), respectively. In addition, we found that the expression of miR-665 and miR-873-5p was significantly downregulated, while HOXB5 and CADM1 expression levels were increased in EC tissues. Taken together, our findings support the important role of DCST1-AS1 in EC progression, and DCST1-AS1 may be used as a prognostic biomarker as well as a potential therapeutic target for EC.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jinan Guo ◽  
Zhixin Chen ◽  
Hongtao Jiang ◽  
Zhou Yu ◽  
Junming Peng ◽  
...  

Abstract Background Bladder cancer is the most common human urological malignancies with poor prognosis, and the pathophysiology of bladder cancer involves multi-linkages of regulatory networks in the bladder cancer cells. Recently, the long noncoding RNAs (lncRNAs) have been extensively studied for their role on bladder cancer progression. In this study, we evaluated the expression of DLX6 Antisense RNA 1 (DLX6-AS1) in the cancerous bladder tissues and studied the possible mechanisms of DLX6-AS1 in regulating bladder cancer progression. Methods Gene expression was determined by qRT-PCR; protein expression levels were evaluated by western blot assay; in vitro functional assays were used to determine cell proliferation, invasion and migration; nude mice were used to establish the tumor xenograft model. Results Our results showed the up-regulation of DLX6-AS1 in cancerous bladder cancer tissues and bladder cell lines, and high expression of DLX6-AS1 was correlated with advance TNM stage, lymphatic node metastasis and distant metastasis. The in vitro experimental data showed that DLX6-AS1 overexpression promoted bladder cancer cell growth, proliferation, invasion, migration and epithelial-to-mesenchymal transition (EMT); while DLX6-AS1 inhibition exerted tumor suppressive actions on bladder cancer cells. Further results showed that DLX6-AS1 overexpression increased the activity of Wnt/β-catenin signaling, and the oncogenic role of DLX6-AS1 in bladder cancer cells was abolished by the presence of XAV939. On the other hand, DLX6-AS1 knockdown suppressed the activity of Wnt/β-catenin signaling, and the tumor-suppressive effects of DLX6-AS1 knockdown partially attenuated by lithium chloride and SB-216763 pretreatment. The in vivo tumor growth study showed that DLX6-AS1 knockdown suppressed tumor growth of T24 cells and suppressed EMT and Wnt/β-catenin signaling in the tumor tissues. Conclusion Collectively, the present study for the first time identified the up-regulation of DLX6-AS1 in clinical bladder cancer tissues and in bladder cancer cell lines. The results from in vitro and in vivo assays implied that DLX6-AS1 exerted enhanced effects on bladder cancer cell proliferation, invasion and migration partly via modulating EMT and the activity of Wnt/β-catenin signaling pathway.


Author(s):  
Shuilian Wu ◽  
Jialei Yang ◽  
Haotian Xu ◽  
Xin Wang ◽  
Ruirui Zhang ◽  
...  

AbstractExtensive research confirmed that circRNA can play a regulatory role in various stages of tumors by interacting with various molecules. Identifying the differentially expressed circRNA in bladder cancer and exploring its regulatory mechanism on bladder cancer progression are urgent. In this study, we screened out a circRNA-circGLIS3 with a significant upregulation trend in both bladder cancer tissues and cells. Bioinformatics prediction results showed that circGLIS3 may be involved in multiple tumor-related pathways. Function gain and loss experiments verified circGLIS3 can affect the proliferation, migration, and invasion of bladder cancer cells in vitro. Moreover, silencing circGLIS3 inhibited bladder cancer cell growth in vivo. Subsequent research results indicated circGLIS3 regulated the expression of cyclin D1, a cell cycle–related protein, and cell cycle progression. Mechanically, circGLIS3 upregulates the expression of SKP1 by adsorbing miR-1273f and then promotes cyclin D1 expression, ultimately promoting the proliferation of bladder cancer cells. In summary, our study indicates that circGLIS3 plays an oncogene role in the development of bladder cancer and has potential to be a candidate for bladder cancer. Graphical abstract


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Yuchen Wang ◽  
Jie Wu ◽  
Wenjie Luo ◽  
Hailiang Zhang ◽  
Guohai Shi ◽  
...  

AbstractBladder cancer is one of the most common malignant tumors in the urinary system. The development and improvement of treatment efficiency require the deepening of the understanding of its molecular mechanism. This study investigated the role of ALPK2, which is rarely studied in malignant tumors, in the development of bladder cancer. Our results showed the upregulation of ALPK2 in bladder cancer, and data mining of TCGA database showed the association between ALPK2 and pathological parameters of patients with bladder cancer. In vitro and in vivo experiments demonstrated that knockdown of ALPK2 could inhibit bladder cancer development through regulating cell proliferation, cell apoptosis, and cell migration. Additionally, DEPDC1A is identified as a potential downstream of ALPK2 with direct interaction, whose overexpression/downregulation can inhibit/promote the malignant behavioral of bladder cancer cells. Moreover, the overexpression of DEPDC1A can rescue the inhibitory effects of ALPK2 knockdown on bladder cancer. In conclusion, ALPK2 exerts a cancer-promoting role in the development of bladder cancer by regulating DEPDC1A, which may become a promising target to improve the treatment strategy of bladder cancer.


2020 ◽  
Author(s):  
Wei Wang ◽  
Jianxin Qiu ◽  
Pin Qu ◽  
Hui Chen ◽  
Jianyun Lan ◽  
...  

Abstract Background: The regulator of cullins-1 (ROC1) is an essential subunit in the cullin-RING ligase (CRL) protein complex and has been shown to be critical in bladder cancer cell survival and progression. This study aimed to explore the molecular mechanism of ROC1 action in the malignant progression of bladder cancer.Methods: This study utilized ex vivo, in vitro, and in vivo nude mouse experiments to assess the underlying mechanisms of ROC1 in bladder cancer cells. The expression of the components of the sonic hedgehog (SHH) pathway was determined by western blot analysis. ROC1 expression in human tumors was evaluated by immunohistochemistry.Results: ROC1 overexpression promoted the growth of bladder cancer cells, whereas knockdown of ROC1 expression had the opposite effect in bladder cancer cells. Mechanistically, ROC1 was able to target suppressor of fused homolog (SUFU) for ubiquitin-dependent degradation, allowing Gli2 release from the SUFU complex to activate the SHH pathway. Furthermore, knockdown of SUFU expression partially rescued the ROC1 knockdown-suppressed SHH activity as well as cancer cell growth inhibition. In ex vivo experiments, tissue microarray analysis of human bladder cancer specimens revealed a positive association of ROC1 expression with the SHH pathway activity. Conclusion: This study demonstrated that dysregulation of the ROC1–SUFU–GLI2 axis plays an important role in bladder cancer progression and that targeting ROC1 expression is warranted in further investigations as a novel strategy for the future control of bladder cancer.


2020 ◽  
Author(s):  
Wei Wang ◽  
Jianxin Qiu ◽  
Pin Qu ◽  
Hui Chen ◽  
Jianyun Lan ◽  
...  

Abstract Background: The regulator of cullins-1 (ROC1) is an essential subunit in the cullin-RING ligase (CRL) protein complex and has been shown to be critical in bladder cancer cell survival and progression. This study aimed to explore the molecular mechanism of ROC1 action in the malignant progression of bladder cancer.Methods: This study utilized ex vivo, in vitro, and in vivo nude mouse experiments to assess the underlying mechanisms of ROC1 in bladder cancer cells. The expression of the components of the sonic hedgehog (SHH) pathway was determined by western blot analysis. ROC1 expression in human tumors was evaluated by immunohistochemistry.Results: ROC1 overexpression promoted the growth of bladder cancer cells, whereas knockdown of ROC1 expression had the opposite effect in bladder cancer cells. Mechanistically, ROC1 was able to target suppressor of fused homolog (SUFU) for ubiquitin-dependent degradation, allowing Gli2 release from the SUFU complex to activate the SHH pathway. Furthermore, knockdown of SUFU expression partially rescued the ROC1 knockdown-suppressed SHH activity as well as cancer cell growth inhibition. In ex vivo experiments, tissue microarray analysis of human bladder cancer specimens revealed a positive association of ROC1 expression with the SHH pathway activity. Conclusion: This study demonstrated that dysregulation of the ROC1–SUFU–GLI2 axis plays an important role in bladder cancer progression and that targeting ROC1 expression is warranted in further investigations as a novel strategy for the future control of bladder cancer.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hongtao Zhen ◽  
Peng Du ◽  
Qiang Yi ◽  
Xiaolong Tang ◽  
Tongqing Wang

Abstract Background Bladder cancer is a prevalent malignancy of the urinary system, in which long non-coding RNAs (lncRNAs) are highly associated. We aimed to elucidate the role of LINC00958 in bladder cancer. Methods LINC00958 expression levels were measured using qRT-PCR. The interaction of LINC00958-miR-490-3p-AURKA was analyzed by luciferase, RIP, and RNA pull-down assays. The biological roles of LINC00958, miR-490-3p, and AURKA in bladder cancer cells were analyzed using CCK8, BrdU, and transwell assays. Results Increased expression of LINC00958 and AURKA was observed in bladder cancer tissues and cell lines. Decreased LINC00958 expression repressed bladder cancer progression and downregulation of miR-490-3p accelerated bladder cancer cell progression. Moreover, LINC00958 sponges miR-490-3p to upregulate AURKA expression, thereby promoting carcinogenesis in bladder cancer cells. Conclusions Our study revealed that LINC00958 facilitated cell proliferation and invasion, and suppressed cell apoptosis by sponging miR-490-3p and upregulating AURKA, thus inspiring a new treatment method for bladder cancer.


2020 ◽  
Author(s):  
Feng Qu ◽  
Bin Zhu ◽  
Yi-Lin Hu ◽  
Qin-Sheng Mao ◽  
Ying Feng

Abstract Background: Gastric cancer (GC) is among the most common and deadliest cancers globally. While many long non-coding RNAs (lncRNAs) are key regulators of GC pathogenesis, the role of HOXA-AS3 in this oncogenic context remains to be defined. Methods: Levels of HOXA-AS3 expression in GC were quantified, after which the functional role of this lncRNA in vitro and in vivo was assessed via HOXA-AS3 knockdown. The localization of HOXA-AS3 within cells was also confirmed, and predicted microRNA (miRNA) targets of this lncRNA and its ability to modulate downstream NF-κB signaling in GC cells were evaluated.Results: GC cells and tissues exhibited significant HOXA-AS3 upregulation (P<0.05), and the levels of this lncRNA were found to be correlated with tumor size, lymph node status, invasion depth, and Helicobacter pylori infection status. Knocking down HOXA-AS3 disrupted GC cell migration, proliferation, and invasion in vitro and tumor metastasis in vivo. At a mechanistic level, we found that HOXA-AS3 was able to sequester miR-29a-3p, thereby regulating the expression of LTβR and modulating NF-κB signaling in GC. Conclusion: HOXA-AS3/miR-29a-3p/LTβR/NF-κB regulatory axis contributes to the progression of GC, thereby offering novel target for the prognosis and treatment of GC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
W. Wang ◽  
J. Qiu ◽  
P. Qu ◽  
H. Chen ◽  
J. Lan ◽  
...  

Abstract Background The regulator of cullins-1 (ROC1) is an essential subunit in the cullin-RING ligase (CRL) protein complex and has been shown to be critical in bladder cancer cell survival and progression. This study aimed to explore the molecular mechanism of ROC1 action in the malignant progression of bladder cancer. Methods This study utilized ex vivo, in vitro, and in vivo nude mouse experiments to assess the underlying mechanisms of ROC1 in bladder cancer cells. The expression of the components of the sonic hedgehog (SHH) pathway was determined by western blot analysis. ROC1 expression in human tumors was evaluated by immunohistochemistry. Results ROC1 overexpression promoted the growth of bladder cancer cells, whereas knockdown of ROC1 expression had the opposite effect in bladder cancer cells. Mechanistically, ROC1 was able to target suppressor of fused homolog (SUFU) for ubiquitin-dependent degradation, allowing Gli2 release from the SUFU complex to activate the SHH pathway. Furthermore, knockdown of SUFU expression partially rescued the ROC1 knockdown-suppressed SHH activity as well as cancer cell growth inhibition. In ex vivo experiments, tissue microarray analysis of human bladder cancer specimens revealed a positive association of ROC1 expression with the SHH pathway activity. Conclusion This study demonstrated that dysregulation of the ROC1–SUFU–GLI2 axis plays an important role in bladder cancer progression and that targeting ROC1 expression is warranted in further investigations as a novel strategy for the future control of bladder cancer.


Sign in / Sign up

Export Citation Format

Share Document