scholarly journals Local Thickening and Friction Reducing to Constant Resistance in a Prefolded Energy Absorption Device

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hailiang Xu ◽  
Jiaqi Song ◽  
Dong An ◽  
Yimin Song ◽  
Xiangfeng Lv

The energy absorption support for impact resistance used in mining engineering is a prefolded energy absorption device. In this paper, through the quasistatic compression test and numerical simulation, the relationship between the deformation process, load-displacement curve, and plastic strain of the original prefolded energy absorbing device is studied. It is found that the concave side stiffness has an obvious effect on the first and second descending sections of the load-displacement curve, and the friction coefficient has an obvious effect on the second ascending section of that. In order to make the prefolded energy absorption device reach the state of constant resistance where the reaction load does not fluctuate or the fluctuation is small in the crushing process, the plastic strain is restrained by thickening the local area of the concave side, which effectively reduces the descending amplitude of the load-displacement curve. Whether continuoues deformation occurs is affected by the friction coefficient. Finally, a constant resistance energy absorption device is designed by thickening the concave side and reducing the friction coefficient. Compared with the original structure, the maximum bearing capacity of the constant resistance energy absorption device is basically unchanged, the average bearing capacity is increased by 29%, the total energy absorption is increased by 111%, the specific energy absorption is increased by 119%, and the load-displacement curve variance is reduced to 3% of the original structure.

2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110368
Author(s):  
Dong An ◽  
Jiaqi Song ◽  
Hailiang Xu ◽  
Jingzong Zhang ◽  
Yimin Song ◽  
...  

When the rock burst occurs, energy absorption support is an important method to solve the impact failure. To achieve constant resistance performance of energy absorption device, as an important component of the support, the mechanical properties of one kind of prefolded tube is analyzed by quasi-static compression test. The deformation process of compression test is simulated by ABAQUS and plastic strain nephogram of the numerical model are studied. It is found that the main factors affecting the fluctuation of force-displacement curve is the stiffness of concave side wall. The original tube is improved to constant resistance by changing the side wall. The friction coefficient affects the folding order and form of the energy absorbing device. Lifting the concave side wall stiffness can improve the overall stiffness of energy absorption device and slow down the falling section of force-displacement curve. It is always squeezed by adjacent convex side wall in the process of folding, with large plastic deformation. Compared with the original one, the improved prefolded tube designed in this paper can keep the maximum bearing capacity ( Pmax), increase the total energy absorption ( E), improve the specific energy absorption (SEA), and decrease the variance ( S2) of force-displacement curve.


2021 ◽  
Vol 261 ◽  
pp. 02070
Author(s):  
Shilong Jia ◽  
Fang Zhou ◽  
Zhongliang Chen

In order to study the mechanical properties of the joints, ANSYS software was used to simulate and analyse the failure form, ultimate bearing capacity, load-displacement curve and the rotational stiffness of the wheel-coupler joint node under force. Results: The wheel-coupler joint node has obvious non-linear characteristics when subjected to force; The bilateral symmetric tension and compression state could better reflect the failure form and deformation of the joint; The rotational stiffness of the wheel-coupler joint node under tension and bending was greater than that under bending and torsion, and was greater than that under tension, bending and torsion.


Author(s):  
A A Singace ◽  
H El-Sobky

By changing the end constraints, the behaviour of mild steel and aluminium alloy tubes of relatively low D/ t ratio, subjected to an axial crushing load, is studied. Many combinations of end constraints were produced by radially constraining one or both ends of the loaded tube outwards, inwards or in both directions. Partially constrained mild steel and aluminium tubes are found to collapse into either a pure concertina mode or a pure diamond mode, depending on the ratio D/ t and the material characteristics. Mixed concertina-diamond modes would generally result by radially constraining the tube at both ends. Constraining the tube radially outwards at one end does not significantly affect the load-displacement characteristics and the mode of collapse. However, constraining the tube radially inwards produces a different mode than that observed under outward, inward or combined outward/inward constraint. New modes of collapse have been observed under different combinations of outward and inward constraints at both ends. Fully constraining the tubes in the radial direction results in the removal of the initial overshoot in the load-displacement curve, which is responsible for the overestimation of the mean crushing load and the energy absorption capacity of tubular elements. The mode of collapse and the energy absorbed could be controlled with the proper choice of the end constraints.


2021 ◽  
Vol 293 ◽  
pp. 02041
Author(s):  
Yonggang Qiu ◽  
Chuansheng Huang ◽  
Renhao Hong ◽  
Chunhan Chen ◽  
Jinxiang Yi ◽  
...  

The principle and method of self-balancing test are introduced briefly. In this article, through comparison of common Q-S curve of equivalent transformation to transform from the balance of the measured load-displacement curve for the traditional method of load - displacement curve, puts forward the advantages and disadvantages of each, through the three bored piles in static load test of pile reaction from balance to detect vertical compressive ultimate bearing capacity of single pile is in line with the requirements and compare the load-displacement curve after conversion. Some problems of the self-balancing method in engineering are pointed out, which is of certain reference value to the popularization and application of the self-balancing test of pile bearing capacity.


2013 ◽  
Vol 569-570 ◽  
pp. 398-405
Author(s):  
Nurulakmar Abu Husain ◽  
Chi Loog Pang

This paper deals with experimental investigations of single hat longitudinal rail under quasi-static crush loading. A set of identical specimen which was simplified from actual automotive longitudinal rail was fabricated, and quasi-static testing (i.e., compression and bending test) were conducted. The main objective of this research was to study the failure mode, bending and tensile behaviour of the structure under bending and axial compression. In order to get the compressive load-displacement response and its corresponding deformation pattern, the compression test was carried out using a Universal Testing Machine. Stress-strain curve and energy absorption of the specimen were derived from the compressive load-displacement response. It was found that the quasi-static response of the specimen in compression case was affected by the number and position of spot welds. For the bending test, the bending load was found to be fluctuated with the displacement in a way analogous to the folding behaviour and deformation of the cross-section of the specimen. Bending moment-rotation characteristic was derived from bending load-displacement curve to investigate the energy absorption of the specimen in bending case. Lastly, the von Mises stress at the top and bottom surface of the specimen is increased with increment of the punch head travel distance.


2014 ◽  
Vol 919-921 ◽  
pp. 706-709
Author(s):  
Shuai Jie Yuan ◽  
Kun Yong Zhang ◽  
Zi Jian Liu ◽  
Jian Cheng Li

Ultimate lateral bearing capacity of rock mass is the base of the research of laterally loaded drilled shafts socketed in rock mass. The ultimate bearing capacity is often not available because of the limitation of loading ability in field tests. Numerical tests are used here to simulate the drilled shafts socketed in rock mass and expand the load-displacement curve obtained from field tests. Common methods of determining ultimate lateral bearing capacity are also analyzed and compared here. At last, a relatively accurate method of determining laterally loaded drilled shafts socketed in rock mass is recommended.


Author(s):  
Huineng Wang ◽  
Yanfeng Guo ◽  
Yungang Fu ◽  
Dan Li

This study introduces the opinion of the corrugation hierarchy to develop the second-order corrugation paperboard, and explore the deformation characteristics, yield strength, and energy absorbing capacity under out-of-plane static evenly compression loading by experimental and analytical approaches. On the basis of the inclined-straight strut elements of corrugation unit and plastic hinge lines, the yield and crushing strengths of corrugation unit were analyzed. This study shows that as the compressive stress increases, the second-order corrugation core layer is firstly crushed, and the first-order corrugation structures gradually compacted until the failure of entire structure. The corrugation type has an obvious influence on the yield strength of the corrugation sandwich panel, and the yield strength of B-flute corrugation sandwich panel is wholly higher than that of the C-flute structure. At the same compression rate, the flute type has a significant impact on energy absorption, and the C-flute second-order corrugation sandwich panel has better bearing capacity than the B-flute structure. The second-order corrugation sandwich panel has a better bearing capacity than the first-order structure. The static compression rate has little effect on the yield strength and deformation mode. However, with the increase of the static compression rate, the corrugation sandwich panel has a better cushioning energy absorption and material utilization rate.


2021 ◽  
Vol 60 (1) ◽  
pp. 503-518
Author(s):  
Juan Han ◽  
Lu Zhu ◽  
Hai Fang ◽  
Jian Wang ◽  
Peng Wu

Abstract This article proposed an innovative composite sandwich structure reinforced with trapezoidal latticed webs with angles of 45°, 60° and 75°. Four specimens were conducted according to quasi-static compression methods to investigate the compressive behavior of the novel composite structures. The experimental results indicated that the specimen with 45° trapezoidal latticed webs showed the most excellent energy absorption ability, which was about 2.5 times of the structures with vertical latticed webs. Compared to the traditional composite sandwich structure, the elastic displacement and ultimate load-bearing capacity of the specimen with 45° trapezoidal latticed webs were increased by 624.1 and 439.8%, respectively. Numerical analysis of the composite sandwich structures was carried out by using a nonlinear explicit finite element (FE) software ANSYS/LS-DYNA. The influence of the thickness of face sheets, lattice webs and foam density on the elastic ultimate load-bearing capacity, the elastic displacement and initial stiffness was analyzed. This innovative composite bumper device for bridge pier protection against ship collision was simulated to verify its performance. The results showed that the peak impact force of the composite anti-collision device with 45° trapezoidal latticed webs would be reduced by 17.3%, and the time duration will be prolonged by about 31.1%.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2312
Author(s):  
Xin Liang ◽  
Fang Yan ◽  
Yuliang Chen ◽  
Huiqin Wu ◽  
Peihuan Ye ◽  
...  

In order to study the mechanical properties of recycled aggregate concrete (RAC) at different ages, 264 standard cubes were designed to test its direct shear strength and cube compressive strength while considering the parameters of age and recycled aggregate replacement ratio. The failure pattern and load–displacement curve of specimens at direct shearing were obtained; the direct shear strength and residual shear strength were extracted from the load–displacement curves. Experimental results indicate that the influence of the replacement ratio for the front and side cracks of RAC is insignificant, with the former being straight and the latter relatively convoluted. At the age of three days, the damaged interface between aggregate and mortar is almost completely responsible for concrete failure; in addition to the damage of coarse aggregates, aggregate failure is also an important factor in concrete failure at other ages. The load–displacement curve of RAC at direct shearing can be divided into elasticity, elastoplasticity, plasticity, and stabilization stages. The brittleness of concrete decreases with its age, which is reflected in the gradual shortening of the elastoplastic stage. At 28 days of age, the peak direct shear force increases with the replacement ratio, while the trend is opposite at ages of 3 days, 7 days, and 14 days, respectively. The residual strength of RAC decreases inversely to the replacement ratio, with the rate of decline growing over time. A two-parameter RAC direct shear strength calculation formula was established based on the analysis of age and replacement rate to peak shear force of RAC. The relationship between cube compressive strength and direct shear strength of recycled concrete at various ages was investigated.


Author(s):  
Nguyen Van Liem ◽  
Wu Zhenpeng ◽  
Jiao Renqiang

The effect of the shape/size and distribution of microgeometries of textures on improving the tribo-performance of crankpin bearing is proposed. Based on a combined model of the slider-crank mechanism dynamic and hydrodynamic lubrication, the distribution density, area density, and shape of spherical textures, square-cylindrical textures, wedge-shaped textures, and a hybrid between spherical texture and square-cylindrical texture on the crankpin bearing's tribo-performance are investigated under different operating conditions of the engine. The tribological characteristic of the crankpin bearing is then evaluated via the indexes of the oil film pressure p, asperity contact force, friction force, and friction coefficient of the crankpin bearing. The research results show that the distribution density with n = 12 and m = 6, and area density with α = 30% of various microtextures have an obvious effect on ameliorating the crankpin bearings tribo-performance. Concurrently, at the mixed lubrication region, the shape of the square-cylindrical texture on improving the tribo-performance is better than the other shapes of the spherical texture, wedge-shaped texture, and spherical and square-cylindrical texture. Particularly, all the average values of the asperity contact force, friction force, and friction coefficient with a square-cylindrical texture are significantly reduced by 14.6%, 19.5%, and 34.5%, respectively, in comparison without microtextures. Therefore, the microtextures of the spherical texture applied on the bearing surface can contribute to enhance the durability and decrease the friction power loss of the engine.


Sign in / Sign up

Export Citation Format

Share Document