scholarly journals NAC Supplementation of Hyperglycemic Rats Prevents the Development of Insulin Resistance and Improves Antioxidant Status but Only Alleviates General and Salivary Gland Oxidative Stress

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Anna Zalewska ◽  
Sara Zięba ◽  
Paula Kostecka-Sochoń ◽  
Agnieszka Kossakowska ◽  
Małgorzata Żendzian-Piotrowska ◽  
...  

Previous studies based on animal models demonstrated that N-acetylcysteine (NAC) prevents oxidative stress and improves salivary gland function when the NAC supplementation starts simultaneously with insulin resistance (IR) induction. This study is the first to evaluate the effect of a 4-week NAC supply on the antioxidant barrier and oxidative stress in Wistar rats after six weeks of high-fat diet (HFD) intake. Redox biomarkers were evaluated in the parotid (PG) and submandibular (SMG) salivary glands and stimulated whole saliva (SWS), as well as in the plasma and serum. We demonstrated that the activity of salivary peroxidase and superoxide dismutase and total antioxidant capacity were significantly higher in PG, SMG, and SWS of IR rats treated with NAC. It appears that in PG and SMG of rats fed an HFD, N-acetylcysteine supplementation abolishes oxidative modifications to proteins (evidenced by decreased content of advanced oxidation protein products (AOPP) and advanced glycation end products (AGE)). Simultaneously, it does not reverse oxidative modifications of lipids (as seen in increased concentration of 8-isoprostanes and 4-hydroxynonenal vs. the control), although it reduces the peroxidation of salivary lipids in relation to the group fed a high-fat diet alone. NAC administration increased protein levels in PG and SMG but did not affect saliva secretion, which was significantly lower compared to the controls. To sum up, the inclusion of NAC supplementation after six weeks of HFD feeding was effective in improving the general and salivary gland antioxidant status. Nevertheless, NAC did not eliminate salivary oxidative stress and only partially prevented salivary gland dysfunction.

2010 ◽  
Vol 299 (4) ◽  
pp. R1082-R1090 ◽  
Author(s):  
Jill K. Morris ◽  
Gregory L. Bomhoff ◽  
John A. Stanford ◽  
Paige C. Geiger

Despite numerous clinical studies supporting a link between type 2 diabetes (T2D) and Parkinson's disease (PD), the clinical literature remains equivocal. We, therefore, sought to address the relationship between insulin resistance and nigrostriatal dopamine (DA) in a preclinical animal model. High-fat feeding in rodents is an established model of insulin resistance, characterized by increased adiposity, systemic oxidative stress, and hyperglycemia. We subjected rats to a normal chow or high-fat diet for 5 wk before infusing 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. Our goal was to determine whether a high-fat diet and the resulting peripheral insulin resistance would exacerbate 6-OHDA-induced nigrostriatal DA depletion. Prior to 6-OHDA infusion, animals on the high-fat diet exhibited greater body weight, increased adiposity, and impaired glucose tolerance. Two weeks after 6-OHDA, locomotor activity was tested, and brain and muscle tissue was harvested. Locomotor activity did not differ between the groups nor did cholesterol levels or measures of muscle atrophy. High-fat-fed animals exhibited higher homeostatic model assessment of insulin resistance (HOMA-IR) values and attenuated insulin-stimulated glucose uptake in fast-twitch muscle, indicating decreased insulin sensitivity. Animals in the high-fat group also exhibited greater DA depletion in the substantia nigra and the striatum, which correlated with HOMA-IR and adiposity. Decreased phosphorylation of HSP27 and degradation of IκBα in the substantia nigra indicate increased tissue oxidative stress. These findings support the hypothesis that a diet high in fat and the resulting insulin resistance may lower the threshold for developing PD, at least following DA-specific toxin exposure.


2013 ◽  
Vol 41 (03) ◽  
pp. 487-502 ◽  
Author(s):  
Wei-Xi Cui ◽  
Jie Yang ◽  
Xiao-Qing Chen ◽  
Qian Mao ◽  
Xiang-Lan Wei ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) has become a major challenge to the healthcare system. This study was designed to evaluate the effect of the triterpenoid-rich fraction (TF) from Ilex hainanensis Merr. on NAFLD. Male Sprague-Dawley (SD) rats were fed a normal diet (control) or high fat diet (NAFLD model). After four weeks, the high fat diet group was orally administrated TF (250 mg/kg) for another two weeks. High fat diet fed rats displayed hyperlipidemia and a decline in liver function compared with control. However, administration with TF could effectively improve these symptoms, as demonstrated by decreasing the plasma levels of triglyceride (p <0.05), total cholesterol (p < 0.01), low-density lipoprotein cholesterol (p < 0.05), alanine transaminase (p < 0.05), aspartate aminotransferase (p < 0.01), liver index (p < 0.05) and insulin resistance index (p < 0.05) while increasing the high-density lipoprotein cholesterol (p < 0.05). Meanwhile, histopathological examination of livers also showed that TF could reduce the incidence of liver lesions induced by high fat diet. Furthermore, TF could alleviate oxidative stress and inflammation status indicated by the decline malondialdehyde and superoxide dismutase levels (p < 0.01, both) and levels of interleukin 6 and tumor necrosis factor-α (p < 0.05). In addition, immunohistochemistry showed TF evidently elevated the peroxisome proliferator-activated receptor (PPARα) expression (p < 0.01), while it diminished the Cytochrome P450 2E1 (CYP2E1) expression (p < 0.01) in liver. These results demonstrate that TF has potential ability to protect liver against NAFLD by regulating lipids metabolism and alleviating insulin resistance, inflammation and oxidative stress. This effect might be associated with regulating PPARα and CYP2E1 expression.


2020 ◽  
Author(s):  
Xiaoling Wu ◽  
Xinyu Zou ◽  
Mi Zhang ◽  
Haiqiang Hu ◽  
Xueliang Wei ◽  
...  

Abstract Background: Osteocalcin (OCN), as an energy-regulating hormone, involves in preventing nonalcoholic steatohepatitis. Laying hens have been used as an animal model for investigating liver function and related metabolic disordersas that the synthesis of fat in laying hens is much faster than in mammals with limited adipose tissue. The aim of this study was to investigate the effects of OCN on fatty liver hemorrhagic syndrome (FLHS) in aged laying hens. Methods: Thirty 68-week-old White Plymouth laying hens were randomly assigned into conventional single-bird cages, and the cages were randomly allocated into one of three treatments: normal diet (ND + vehicle , ND+V), high-fat diet (HFD + vehicle, HFD+V), and HFD + OCN (3 μg/bird, 1 time/2 days, i.m.) for 40 days. At experimental day 30, oral glucose tolerance tests (OGTT) and insulin tolerance tests (ITT) were performed. At the end of experiment, the hens were euthanized followed blood collection. The plasma aspartate transaminase (AST), alkaline phosphatase (ALP), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured using an automatic biochemistry analyzer. Pathological changes in the liver were examined under both light and transmission electron microscopes. The plasma inflammatory factors including interleukin-1 (IL-1), IL-6, and tumor Necrosis Factor-alpha (TNF-α) were analyzed by ELISA, and the gene expressions of these inflammatory factors in the liver were analyzed by Real-time PCR. And oxidative stress was evaluated using Malondialdehyde (MDA) and Glutathione peroxidase (GSH-Px) assay kits. Results: The results showed HFD hens had more severe liver haemorrhage and fibrosis than ND hens. The ultra-microstructural examination showed that hepatocytes of HFD hens appeared necrotic pyknosis associated with great intracellular electron, mitochondrial swelling, shrunk nucleus and absence of autolysosomes. OCN mitigated these pathological changes by improved HFD hens’ insulin resistance via alleviating the glucose intolerence and improving insulin sensitivity; inhibited HFD-induced oxidative stress as evidenced by decreased liver concentrations of MDA but increased GSH-Px; and reduced the inflammatory reaction with reducing blood IL-6 and TNF-α concentrations and mRNA expressions. Conclusion: These results suggest a high-fat diet promotes the FLHS development in aged hens, while OCN prevents the FLHS process through inhibiting insulin resistance, inflammatory reaction, oxidative stress and fibrosis, and acting autophagy.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 249
Author(s):  
Jong Ryeal Hahm ◽  
Myeung Hoon Jo ◽  
Rahat Ullah ◽  
Min Woo Kim ◽  
Myeong Ok Kim

Oxidative stress and insulin resistance play major roles in numerous neurodegenerative diseases, including Alzheimer’s disease (AD). A high-fat diet induces obesity-associated oxidative stress, neuronal insulin resistance, microglial activation, and neuroinflammation, which are considered important risk factors for neurodegeneration. Obesity-related metabolic dysfunction is a risk factor for cognitive decline. The present study aimed to elucidate whether chronic consumption of a high-fat diet (HFD; 24 weeks) can induce insulin resistance, neuroinflammation, and amyloid beta (Aβ) deposition in mouse brains. Male C57BL/6N mice were used for a high-fat diet (HFD)-induced pre-clinical model of obesity. The protein expression levels were examined via Western blot, immunofluorescence, and the behavior analysis was performed using the Morris water maze test. To obtain metabolic parameters, insulin sensitivity and glucose tolerance tests were performed. We found that metabolic perturbations from the chronic consumption of HFD elevated neuronal oxidative stress and insulin resistance through adiponectin receptor (AdipoR1) suppression in HFD-fed mice. Similarly, our in vitro results also indicated that knockdown of AdipoR1 in the embryonic mouse hippocampal cell line mHippoE-14 leads to increased oxidative stress in neurons. In addition, HFD markedly increased neuroinflammatory markers’ glial activation in the cortex and hippocampus regions of HFD mouse brains. More importantly, we observed that AdipoR1 suppression increased the amyloidogenic pathway both in vivo and in vitro. Furthermore, deregulated synaptic proteins and behavioral deficits were observed in the HFD mouse brains. Taken together, our findings suggest that excessive consumption of an HFD has a profound impact on brain function, which involves the acceleration of cognitive impairment due to increased obesity-associated oxidative stress, insulin resistance, and neuroinflammation, which ultimately may cause early onset of Alzheimer’s pathology via the suppression of AdipoR1 signaling in the brain.


2019 ◽  
Vol 317 (6) ◽  
pp. C1172-C1182 ◽  
Author(s):  
Min-Gyeong Shin ◽  
Hye-Na Cha ◽  
Soyoung Park ◽  
Yong-Woon Kim ◽  
Jong-Yeon Kim ◽  
...  

Selenoprotein W (SelW) is a selenium-containing protein with a redox motif found abundantly in the skeletal muscle of rodents. Previous in vitro studies suggest that SelW plays an antioxidant role; however, relatively few in vivo studies have addressed the antioxidant role of SelW. Since oxidative stress is a causative factor for the development of insulin resistance in obese subjects, we hypothesized that if SelW plays a role as an antioxidant, SelW deficiency could aggravate the oxidative stress and insulin resistance caused by a high-fat diet. SelW deficiency did not affect insulin sensitivity and H2O2 levels in the skeletal muscle of control diet-fed mice. SelW levels in the skeletal muscle were decreased by high-fat diet feeding for 12 wk. High-fat diet induced obesity and insulin resistance and increased the levels of H2O2 and oxidative stress makers, which were not affected by SelW deficiency. High-fat diet feeding increased the expression of antioxidant enzymes; however, SelW deficiency did not affect the expression levels of antioxidants. These results suggest that SelW does not play a protective role against oxidative stress and insulin resistance in the skeletal muscle of high-fat diet-fed obese mice.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Naphatsanan Duansak ◽  
Pritsana Piyabhan ◽  
Umarat Srisawat ◽  
Jarinyaporn Naowaboot ◽  
Nusiri Lerdvuthisopon ◽  
...  

Background. Inflammation and hypertension are primary mechanisms involving in obesity-associated adverse effects of a high-fat diet. The aim of this study was to evaluate the effects of rice bran extract (RBE) on arterial blood pressure, hepatic steatosis, inflammation, and oxidative stress in high-fat diet (HFD)-induced obese mice. Methods. Male ICR mice were divided into four groups, including a normal-diet control group, a high-fat diet (HFD) (60% kcal from fat) group, an HFD group treated with RBE (220 mg/kg/day), and an HFD group treated with 1100 mg/kg/day for eight weeks. Besides body weight and arterial blood pressure, we determined liver values of total cholesterol, triglyceride, as well as percent body fat, tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), nuclear factor kappa-B (NF-κB), matrix metalloprotease-9 (MMP-9), cyclooxygenase-2 (COX-2), and mRNA endothelial nitric oxide synthase (eNOS). Results. The HFD group had increased body weight, increased systolic and diastolic blood pressure, liver total cholesterol, triglyceride, NF-κB, COX-2 and MMP-9 protein levels, and decreased mRNA eNOS in the aorta. Mice of the HFD group receiving RBE had reduced diastolic blood pressure, as well as significantly decreased liver and serum TNF-α and MDA levels in the liver, and reduced NF-κB levels in both the liver and heart. Conclusions. These results demonstrate that RBE decreases diastolic blood pressure, the liver lipid droplet accumulation, liver and myocardial NF-κB, myocardial COX-2 and MMP-9 protein levels, and oxidative stress. Moreover, RBE may improve endothelial function and may alleviate adverse health effects associated with obesity including obesity-associated hypertension.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Mateusz Maciejczyk ◽  
Piotr Gerreth ◽  
Anna Zalewska ◽  
Katarzyna Hojan ◽  
Karolina Gerreth

Stroke is one of the leading causes of disability and death worldwide. Despite intensive medical care, many of the complaints directly threatening the patient’s life marginalize their dental needs after the stroke. Recent studies indicate reduced saliva secretion in stroke patients in addition to the increased incidence of caries and periodontal disease. Since oxidative stress plays a vital role in the pathogenesis of salivary gland hypofunction and neurodegenerative disorders (including stroke), this is the first to evaluate the relationship between salivary gland activity and protein glycoxidation and nitrosative damage. The content of glycation and protein oxidation products and nitrosative stress was assessed in nonstimulated (NWS) and stimulated (SWS) whole saliva of stroke patients with normal salivary secretion and hyposalivation (reduced saliva production). The study included 30 patients in the stroke’s subacute phase and 30 healthy controls matched by age and sex. We have shown that stroke patients with hyposalivation show increased contents of protein glycation (↑Amadori products and ↑advanced glycation end products), glycoxidation (↑dityrosine), and nitration (↑nitrotyrosine) products compared to stroke cases with normal salivary secretion and control group. Interestingly, higher oxidative/nitrosative stress was found in NWS, which strongly correlates with salivary flow rate, total protein content, and salivary amylase activity. Such relationships were not observed in the control group. Summarizing, oxidative and nitrosative stress may be one of the mechanisms responsible for the impairment of saliva secretion in stroke patients. However, extraglandular sources of salivary oxidative stress in stroke patients cannot be excluded. Further studies to assess salivary gland hypofunction in stroke cases are necessary.


2018 ◽  
Vol 41 (1) ◽  
pp. 92-98 ◽  
Author(s):  
Koichi Murano ◽  
Hirofumi Ogino ◽  
Tomofumi Okuno ◽  
Tomohiro Arakawa ◽  
Hitoshi Ueno

Sign in / Sign up

Export Citation Format

Share Document