scholarly journals Degradation of Toxic Dye Using Phytomediated Copper Nanoparticles and Its Free-Radical Scavenging Potential and Antimicrobial Activity against Environmental Pathogens

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
S. Rajeshkumar ◽  
M. Vanaja ◽  
Arunachalam Kalirajan

The present investigation deals with the green synthesis of copper nanoparticles in an ecofriendly manner using leaf extract of Andrographis paniculata. Green-synthesized copper nanoparticles were studied for their antibacterial, antioxidant, and catalytic activity. The leaves were powdered and extracted with water and added to copper sulphate solution. The reduction of copper ions to nanoparticles was preliminarily identified by the color change of the reaction mixture. The synthesized nanoparticle was characterized by using a UV-Vis Spectrophotometer at a different wavelength with different time intervals. Functional groups available on the surface of the nanoparticle were identified by Fourier transform infrared spectroscopy (FTIR). Surface roughness was characterized by atomic force microscopy (AFM). X-ray diffraction (XRD) analysis showed six distinct intense peaks indicating the crystalline nature of synthesized copper nanoparticles (CuNPs). A scanning electron microscope (SEM) demonstrated polydispersed nanoparticles formed in the reaction process. The antibacterial activity of the nanoparticles was evaluated by an agar well diffusion assay against pathogenic bacteria. The antioxidant activity showed the excellent reduction of DPPH free radicals by nanoparticles. These results confirmed that copper nanoparticles serve as an alternative therapeutic agent over conventional drugs. Moreover, copper nanoparticles were also used to study the effect on the dye degradation process of methyl red and eosin dyes. Copper nanoparticles effectively remove the dyes with high efficiency up to 92% and 95% of methyl red and eosin dye, respectively.


Author(s):  
Selvarani Murugan

Objective: Resistance to antibacterial agents by pathogenic bacteria has emerged in recent years and is a major challenge for the healthcare industry. Copper nanoparticles (CuNPs) are known to be one of the multifunctional inorganic nanoparticles with effective antibacterial activity. Hence the present investigation has been focused on synthesizing and evaluating the bactericidal effect of copper nanoparticles.Methods: CuNPs were synthesized by reducing the aqueous solution of copper sulfate with sodium borohydride. The synthesized particles were characterized by x-ray diffractogram (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques to analyze size, morphology and quantitative information respectively. The antibacterial activity of CuNPs was examined by agar well diffusion method. Synergistic effect of CuNPs with broad-spectrum antibiotics was determined by the agar disc diffusion method.Results: Color change of reaction mixture from blue to dark brown indicated the formation of CuNPs. SEM image clearly demonstrated that the synthesized particles were spherical in shape and its size was found to be 17.85 nm. EDS report confirmed the presence of elemental copper in the resultant nanoparticles and its accounts for major proportion (96%) of the mass of nanoparticles. Bacterial effect of CuNPs revealed that Pseudomonas aeruginosa showed the highest antibacterial sensitivity (16.00±1.63 mm), whereas least susceptibility (9.67±0.47 mm) was noticed against Staphylococcus aureus. An enhanced antibacterial activity of commercial antibiotics was also noticed when it combined with CuNPS. A minimum zone of inhibition was increased from 0.67±0.47 mm to 10.66±0.24 mm when the nanoparticles and antibiotics were given together.Conclusion: It was observed that copper nanoparticles exhibited profound activity against all the tested bacterial strains which shows that CuNPs may serve as a better option for use in medicine in the future.



2020 ◽  
Vol 56 (97) ◽  
pp. 15337-15340
Author(s):  
An-Qi Zheng ◽  
Chen-Xi Zhao ◽  
Xiao-Juan Wang ◽  
Yang Shu ◽  
Jian-Hua Wang

A dual channel fluorescent nanoprobe is developed for simultaneous detection and speciation of mono- and di-valent copper ions. It is demonstrated by exploring the dynamic decomposition/degradation process of copper nanoparticles.



Author(s):  
Prince Edwin Das ◽  
Imad A. Abu-Yousef ◽  
Amin F. Majdalawieh ◽  
Srinivasan Narasimhan ◽  
Palmiro Poltronieri

The synthesis of metal nanoparticles using plant extracts is a very promising method in green synthesis. The medicinal value of Moringa oleifera leaves and the anti-microbial activity of metallic copper were combined in the present study to synthesize copper nanoparticles having a desirable added-value inorganic material. The use of a hydroalcoholic extract of M. oleifera leaves for the green synthesis of copper nanoparticles is an attractive method as it leads to the production of harmless chemicals and reduces waste. The total phenolic content in the M. oleifera leaves extract was 23.0 ± 0.3 mg gallic acid equivalent/g of dried M. oleifera leaves powder. The M. oleifera leaves extract was treated with a copper sulphate solution. A color change from brown to black indicates the formation of copper nanoparticles. Characterization of the synthesized copper nanoparticles was performed using UV-Vis spectrophotometer, FT-IR spectrometer, TEM, SEM, and XRD. The synthesized copper nanoparticles have an amorphous nature and particle size of 35.8-49.2 nm. We demonstrate that the M. oleifera leaves extract and the synthesized copper nanoparticles display considerable antioxidant activity. Moreover, the M. oleifera leaves extract and the synthesized copper nanoparticles exert potent anti-bacterial activity against Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecalis (MIC values for the extract: 500, 250, 250, and 250 μg/mL; MIC values for the cooper nanoparticles: 500, 500, 500, and 250 μg/mL, respectively). Similarly, the M. oleifera leaves extract and the synthesized copper nanoparticles exert relatively more potent anti-fungal activity against Aspergillus niger, Aspergillus flavus, Candida albicans, and Candida glabrata (MIC values for the extract: 62.5, 62.5, 125, and 250 μg/mL; MIC values for the cooper nanoparticles: 125, 125, 62.5, and 31.2 μg/mL, respectively). Our study reveals that the green synthesis of copper nanoparticles using a hydroalcoholic extract of M. oleifera leaves was successful. In addition, the synthesized copper nanoparticles can be potentially employed in the treatment of various microbial infections due to their potent antioxidant, anti-bacterial, and anti-fungal activities.



Author(s):  
Manmeet Kaur ◽  
Suman Prajapati ◽  
Samneek Cholia ◽  
Jaskeet Singh Mann ◽  
Gurpreet Singh

Background: In the recent years, the green synthesis of nanoparticles has taken a lead role over the conventional chemical and physical approach due to its non-toxic, cost effective parameters and has found its place in various applications. Objectives: The major objectives of this study was to synthesise and characterize the copper nanoparticles using the rose extract at different set of conditions and analyse these nanoparticles as a source of dye degradation agent under sunlight conditions. Methods: Present study was conducted with the aim to synthesis the copper nanoparticle using the rose petal extract. The components present the in the extract act as the reduction and stabilization agents for the synthesis of CuNPs. The synthesized nanoparticles were characterized by using UV-VIS, FTIR, XRD and SEM analysis. Photocatalytic degradation of two dyes (Malachite Green and Carbol fuchsin) was analysed using double beam spectroscopic analysis Results: UV-Vis analysis indicated the presence of a peak at around 630 nm. The FT-IR analysis indicated the involvement of various biomolecules during the synthesis of nanoparticles. The structure and the conformation was elucidated using XRD and SEM showed the agglomerated form of the synthesized nanoparticles with the size range of about 60-90 nm. The synthesised copper nanoparticles was used for degradation of malachite green and carbol fuchsin dye using photocatalytic under sunlight irradiation. UV-Vis spectral analysis indicated that synthesised copper nanoparticle act more effective in degradation of malachite green (around 95%) whereas carbol fuchsin showed a maximum degradation by 52% therefore suggesting that CuNPs act as an efficient photo catalyst in dye degradation. Conclusion: The results obtained from this study indicates that rose extract has the potential of synthesis of copper nanoparticles which is non-toxic and convenient approach as compared to physical and chemical synthesis. These nanoparticles can be effectively employed as dye decolourization agents to treat industrial effluent and prevent the environmental pollution.



Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1694
Author(s):  
Noemi Jardón-Maximino ◽  
Gregorio Cadenas-Pliego ◽  
Carlos A. Ávila-Orta ◽  
Víctor Eduardo Comparán-Padilla ◽  
Luis E. Lugo-Uribe ◽  
...  

Copper nanoparticles (CuNPs) functionalized with polyethyleneimine (PEI) and 4-aminobutyric acid (GABA) were used to obtain composites with isotactic polypropylene (iPP). The iPP/CuNPs composites were prepared at copper concentrations of 0.25–5.0 wt % by melt mixing, no evidence of oxidation of the CuNP was observed. Furthermore, the release of copper ions from iPP/CuNPs composites in an aqueous medium was studied. The release of cupric ions was higher in the composites with 2.5 and 5.0 wt %. These composites showed excellent antibacterial activity (AA) toward Pseudomona aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The incorporation of CuNP into the iPP polymeric matrix slightly decreased the thermal stability of the composite material but improved the crystallinity and the storage modulus. This evidence suggests that CuNPs could work as nucleating agents in the iPP crystallization process. The iPP/CuNPs composites presented better AA properties compared to similar composites reported previously. This behavior indicates that the new materials have great potential to be used in various applications that can be explored in the future.



Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1461
Author(s):  
Nuno Mariz-Ponte ◽  
Laura Regalado ◽  
Emil Gimranov ◽  
Natália Tassi ◽  
Luísa Moura ◽  
...  

Pseudomonas syringae pv. actinidiae (Psa) is the pathogenic agent responsible for the bacterial canker of kiwifruit (BCK) leading to major losses in kiwifruit productions. No effective treatments and measures have yet been found to control this disease. Despite antimicrobial peptides (AMPs) having been successfully used for the control of several pathogenic bacteria, few studies have focused on the use of AMPs against Psa. In this study, the potential of six AMPs (BP100, RW-BP100, CA-M, 3.1, D4E1, and Dhvar-5) to control Psa was investigated. The minimal inhibitory and bactericidal concentrations (MIC and MBC) were determined and membrane damaging capacity was evaluated by flow cytometry analysis. Among the tested AMPs, the higher inhibitory and bactericidal capacity was observed for BP100 and CA-M with MIC of 3.4 and 3.4–6.2 µM, respectively and MBC 3.4–10 µM for both. Flow cytometry assays suggested a faster membrane permeation for peptide 3.1, in comparison with the other AMPs studied. Peptide mixtures were also tested, disclosing the high efficiency of BP100:3.1 at low concentration to reduce Psa viability. These results highlight the potential interest of AMP mixtures against Psa, and 3.1 as an antimicrobial molecule that can improve other treatments in synergic action.



Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 913
Author(s):  
Jinyi Wang ◽  
Sen Yang

The development of low-cost and high-efficiency catalysts for wastewater treatment is of great significance. Herein, nanoporous Cu/Cu2O catalysts were synthesized from MnCu, MnCuNi, and MnCuAl with similar ligament size through one-step dealloying. Meanwhile, the comparisons of three catalysts in performing methyl orange degradation were investigated. One of the catalysts possessed a degradation efficiency as high as 7.67 mg·g−1·min−1. With good linear fitting by the pseudo-first-order model, the reaction rate constant was evaluated. In order to better understand the degradation process, the adsorption behavior was considered, and it was divided into three stages based on the intra-particle diffusion model. Three different temperatures were applied to explore the activation energy of the degradation. As a photocatalytic agent, the nanoporous structure of Cu/Cu2O possessed a large surface area and it also had low activation energy, which were beneficial to the excellent degradation performance.



2020 ◽  
Vol 21 (3) ◽  
Author(s):  
Magdalena Woźniak ◽  
Lucyna Mrówczyńska ◽  
Anna Sip ◽  
Marta Babicka ◽  
Tomasz Rogoziński ◽  
...  

Introduction. Honey, propolis and pollen belong to bee products that have beneficial biological properties. These products exhibit e.g. antibacterial, antifungal and antioxidant properties. Due to biological activity and natural origin, bee products are used, e.g. in the food industry, cosmetology and pharmacy. Aim. The aim of the study was to compare the antioxidant and antibacterial activity of honey, propolis and pollen from an apiary located in Wielkopolska Province. Material and methods. Honey, propolis and pollen used in this study came from the same apiary located in Wielkopolska Province. The antioxidant potential of bee products was evaluated applying DPPH· free radical scavenging activity assay. The antimicrobial activity of the tested bee products was determined by the point-diffusion method against 13 strains of pathogenic and potentially pathogenic bacteria. In addition, the total content of phenolic compounds in honey, propolis and pollen was determined by the colorimetric method. Results. Propolis exhibited higher antioxidant activity, in comparison to honey and pollen. The antiradical activity of propolis was equal to 80% approx. activity of Trolox, the standard antioxidant. Among tested bee products, propolis was characterized by the highest total phenols content. In addition, honey, propolis and pollen showed antagonistic activity against tested bacterial strains. Conclusions. The obtained results indicate that among the tested bee products of native origin, i.e. honey, propolis and pollen, propolis characterized by the highest antioxidant activity and the total content of phenolic compounds. In addition, all bee products showed bactericidal activity against the tested bacterial strains.



2015 ◽  
Vol 3 (3) ◽  
pp. 373-380 ◽  
Author(s):  
Shiv Kumar Verma ◽  
Anand Kumar ◽  
Moti Lal ◽  
Mira Debnath

In this study, based on colony morphology characteristics, a total of 19 fungal endophytes were isolated from root of Calotropis Procera a traditional Indian medicinal plant. All fungal isolates were screened for their dye degradation ability. The dyes used as test dyes were Rose Bengal (RB), azo dye Methyl Red (MR), Coomassie Brilliant Blue (CBB) and Methylene Blue (MB) and the concentration of each dye in the experiment was kept 100mg/L. Among the 19 fungal endophytic isolates (CPR1-CPR19), only one isolate CPR4 showed strong dye decolourization capability against all the four test dye. Dye decolourization ability by the isolate CPR4 was determined to be 97.4%, 87%, 65% and 45% for Rose Bengal (RB), Methyl Red (MR), Coomassie Brilliant Blue (CBB) and Methylene Blue (MB) respectively. Complete colour decolourization was observed with rose Bengal followed by Methyl Red. Glucose minimal medium was used for liquid and solid culture of fungal isolates. Fungal biomass production in the presence of four test dye was studied and compare with control culture of fungal endophytes. Effect of temperature, pH, stationary and agitation conditions on dye degradation was also studied.Int J Appl Sci Biotechnol, Vol 3(3): 373-380 



Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4364
Author(s):  
Rutaba Amjad ◽  
Bismillah Mubeen ◽  
Syed Shahbaz Ali ◽  
Syed Sarim Imam ◽  
Sultan Alshehri ◽  
...  

The use of biomaterials in the synthesis of nanoparticles is one of the most up-to-date focuses in modern nanotechnologies and nanosciences. More and more research on green methods of producing metal oxide nanoparticles (NP) is taking place, with the goal to overcome the possible dangers of toxic chemicals for a safe and innocuous environment. In this study, we synthesized copper nanoparticles (CuNPs) using Fortunella margarita leaves’ extract, which reflects its novelty in the field of nanosciences. The visual observation of a color change from dark green to bluish green clearly shows the instant and spontaneous formation of CuNPs when the phytochemicals of F. margarita come in contact with Cu+2 ions. The synthesis of CuNPs was carried out at different conditions, including pH, temperature, concentration ratio and time, and were characterized with UV-Vis absorption spectra, scanning electron microscope (SEM) and X-ray diffraction (XRD). The UV-Vis analysis reveals the surface plasmon resonance property (SPR) of CuNPs, showing a characteristic absorption peak at 679 nm, while SEM reveals the spherical but agglomerated shape of CuNPs of the size within the range of 51.26–56.66 nm.



Sign in / Sign up

Export Citation Format

Share Document