scholarly journals Protective Effect of Bergapten against Human Erythrocyte Hemolysis and Protein Denaturation In Vitro

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Douglas Bosco Aidoo ◽  
Daniels Konja ◽  
Isaac Tabiri Henneh ◽  
Martins Ekor

Bergapten, a furocoumarin found in many medicinal plants, is used for the management of various conditions. The present in vitro study evaluated the ability of bergapten to prevent human erythrocyte hemolysis and protein denaturation. Bergapten administered at 10, 30, and 100 μg/ml exhibited a significant concentration-dependent protection on the erythrocyte membrane exposed to hypotonicity and heat-induced hemolysis. The concentration at which bergapten inhibited 50% of the cells from hemolysis (IC50) was determined on a dose-response curve, plotted as logarithmic (concentration) against percentage inhibition, keeping the hemolysis produced within the control group at 100%. Bergapten treatment produced an IC50 value of 7.71 ± 0.27 μg/ml and 4.23 ± 0.42 μg/ml for hypotonicity and heat-induced hemolysis, respectively. Diclofenac sodium at similar concentrations produced an IC50 value of 12.22 ± 0.30 μg/ml and 9.44 ± 0.23 μg/ml in the hypotonicity and heat-induced hemolysis, respectively. The ability of bergapten to inhibit protein denaturation was studied as part of an investigation on its mechanism of action. The results showed a significant concentration-dependent reduction in protein denaturation. When administered at 10, 30, and 100 μg/ml, bergapten produced a concentration-dependent reduction in albumin denaturation. Bergapten inhibited protein denaturation with IC50 values of 5.34 ± 0.30 μg/ml and 12.18 ± 0.20 μg/ml in the heat-treated egg albumin and bovine serum albumin denaturation experiments, respectively. Diclofenac sodium (10, 30, and 100 μg/ml) exhibited a similar protection against heat-treated egg albumin and bovine serum albumin denaturation experiments with IC50 values of 8.93 ± 0.17 μg/ml and 12.72 ± 0.11 μg/ml, respectively. Taken together, data from this study show that the pharmacological properties of bergapten may in part be related to its membrane-stabilizing and antidenaturation properties.

Author(s):  
Shilpee Chanda ◽  
Archana R. Juvekar

Objective: The present study was carried out to investigate the in vitro anti-inflammatory activity of syringic acid (SA).  Methods: SA was tested for it's in vitro anti-inflammatory activity at different concentrations in protein denaturation, proteinase inhibition and human red blood cell (HRBC) membrane stabilization assay. The reference drugs used were aspirin and diclofenac sodium. Results: SA showed concentration-dependent inhibition of protein denaturation and proteinase activity with a half-maximal inhibitory concentration (IC50) value of 49.38±0.56 µg/ml and 53.73±0.27 µg/ml respectively. Heat-induced haemolysis was inhibited by SA with an IC50 value of 57.13±0.24 µg/ml. SA also inhibited the hypotonicity-induced haemolysis (IC50 value of 53.87±0.72 µg/ml). Conclusion: From the present study, we can conclude that SA possesses appreciable anti-inflammatory effect against denaturation of proteins, proteinase activity, and human red blood membrane stabilization assays. Further studies are required for determining the possible mechanisms behind its anti-inflammatory action.


Author(s):  
Abha Shukla ◽  
Anchal Choudhary

Objective: The objective of the study is to evaluate in vitro antidiabetic and anti-inflammatory activity of different extracts of leaves of Boehmeria rugulosa by different methods.Methods: In vitro α-glucose and α-amylase were used for antidiabetic activity and lipoxygenase, and protein denaturation method of inhibition assays was used to measure anti-inflammatory activity. Successive extraction of leaves petroleum ether (PE), chloroform (CH), ethyl acetate (EA), acetone (AC), and ethanol (ETH) was performed, and extracts obtained from the extraction were applicable to these activities.Results: The AC extract of leaves shows significantly in vitro antidiabetic activity, and AC has offered significant result 470.07±0.65 μg/mL in the inhibition of α-glucosidase and also for α-amylase assay 698.15±1.71 μg/mL. Acarbose was used as standard. In lipoxidase method, AC had shown better results and in protein denaturation method EA shown the higher inhibition (78.06±0.5 μg/ml) than the other extracts. The standard drug diclofenac sodium also offered significant inhibition against lipoxidase enzyme method with IC50 value 21.76±1.29 μg/mL.Conclusion: These findings suggest that the AC and EA possess potent antidiabetic and anti-inflammatory activities in vitro conditions.


2020 ◽  
Vol 23 (9) ◽  
pp. 945-954
Author(s):  
Swagat K. Das ◽  
Sagarika Dash ◽  
Hrudayanath Thatoi ◽  
Jayanta K. Patra

Background: Avicennia alba Blume, is a well-known mangrove plant used in traditional medicinal practices for several human ailments. Objective: The study aimed at evaluation of antidiabetic, antioxidant, anti-inflammatory and cytotoxic activities of A. alba ethanolic leaf (AAL) and bark (AAB) extract along with phytochemical investigation. Methods: In vitro antidiabetic study was done by α-amylase, α-glucosidase enzyme inhibition assay; antioxidant study by DPPH, ABTS, superoxide, and metal chelating assays, antiinflammatory study by protein denaturation assay. The cytotoxicity study was done on TC1 murine cell line. Further, GC-MS analysis was carried out for AAL extracts. Results: AAL exhibited better antidiabetic activities with IC50 values of 1.18 and 0.87 mg/ml against α-amylase and α-glucosidase enzymes respectively. The AAL exhibited better ABTS, superoxide scavenging and metal chelating potential with IC50 values of 0.095, 0.127 and 0.444 mg/ml. However, AAB showed higher DPPH scavenging potential with IC50 value of 0.163 mg/ml. The AAL also exhibited higher protein denaturation potential with IC50 value of 0.370 mg/ml. The bark extract exhibited better cytotoxic activity as compared to leaf extracts on the TC1 murine cell line. The phytochemical study revealed higher total phenol (25.64 mg GAE/g), flavonoid (205.09 mg QE/g), and tannin content (251.17 mg GAE/g) in AAL. The GC-MS analysis revealed the presence of several compounds in AAL extract. Conclusion: The result of the present study highlights the antidiabetic, antioxidant and cytotoxic activities of mangrove plant Avicennia alba.


2015 ◽  
Vol 13 (1) ◽  
pp. 69-73
Author(s):  
Md Abul Khair ◽  
Mohammed Ibrahim ◽  
Qamrul Ahsan ◽  
Md Ruhul Kuddus ◽  
Ridwan Bin Rashid ◽  
...  

The methanol extract of the whole plant of Blumea lacera (Burn.f.) DC. (BLME) has been subjected to preliminary screenings for phytoconstituents and antipyretic, analgesic and anti-inflammatory activities. Antipyretic activity was assessed by the yeast-induced hyperthermia in mice. The analgesic property was evaluated by formalin-induced writhing test. Acetyl salicylic acid (ASA) was used as standard for in-vitro anti-inflammatory activity test. In yeast-induced pyrexia, the crude extract demonstrated a significant (p=0.05) reduction in body temperature of mice after elevation by the administration of yeast. These effects were pronounced at the 2nd and 3rd h of post-treatment with the extract. BLME exhibited a dose-dependent analgesic activity with 39.13% and 56.52% protection at 200-and 400-mg/kg, b.w., respectively as compared to 76.09% revealed by the standard diclofenac sodium. In the anti-inflammatory test, the crude extract at 400 ?g/ml displayed 62.40% inhibition of protein denaturation whereas standard acetyl salicylic acid exhibited 76.74% inhibition. Results of the preliminary phytochemical screenings demonstrated the presence of alkaloids, flavonoids and triterpenoids in the extract. DOI: http://dx.doi.org/10.3329/dujps.v13i1.21863 Dhaka Univ. J. Pharm. Sci. 13(1): 69-73, 2014 (June)


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 437
Author(s):  
Shu-Qin Qin ◽  
Lian-Chun Li ◽  
Jing-Ru Song ◽  
Hai-Yun Li ◽  
Dian-Peng Li

A series of novel structurally simple analogues based on nitidine was designed and synthesized in search of potent anticancer agents. The antitumor activity against human cancer cell lines (HepG2, A549, NCI-H460, and CNE1) was performed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay in vitro. The results showed that some of them had good anticancer activities, especially derivatives with a [(dimethylamino)ethyl]amino side chain in the C-6 position. Planar conjugated compounds 15a, 15b, and 15c, with IC50 values of 1.20 μM, 1.87 μM, and 1.19 μM against CNE1 cells, respectively, were more active than nitidine chloride. Compound 15b and compound 15c with IC50 values of 1.19 μM and 1.37 μM against HepG2 cells and A549 cells demonstrated superior activities to nitidine. Besides, compound 5e which had a phenanthridinone core displayed extraordinary cytotoxicity against all test cells, particularly against CNE1 cells with the IC50 value of 1.13 μM.


Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 666 ◽  
Author(s):  
Najeeb Ur Rehman ◽  
Kashif Rafiq ◽  
Ajmal Khan ◽  
Sobia Ahsan Halim ◽  
Liaqat Ali ◽  
...  

Bioassay guided isolation of the methanolic extract of marine macro brown alga Dictyopteris hoytii afforded one new metabolite (ethyl methyl 2-bromobenzene 1,4-dioate, 1), one new natural metabolite (diethyl-2-bromobenzene 1,4-dioate, 2) along with six known metabolites (3–8) reported for the first time from this source. The structure elucidation of all these compounds was achieved by extensive spectroscopic techniques including 1D (1H and 13C) and 2D (NOESY, COSY, HMBC and HSQC) NMR and mass spectrometry and comparison of the spectral data of known compounds with those reported in literature. The in vitro α-glucosidase inhibition studies confirmed compound 7 to be the most active against α-glucosidase enzyme with IC50 value of 30.5 ± 0.41 μM. Compounds 2 and 3 demonstrated good inhibition with IC50 values of 234.2 ± 4.18 and 289.4 ± 4.91 μM, respectively, while compounds 1, 5, and 6 showed moderate to low inhibition. Furthermore, the molecular docking studies of the active compounds were performed to examine their mode of inhibition in the binding site of the α-glucosidase enzyme.


Endocrinology ◽  
1999 ◽  
Vol 140 (6) ◽  
pp. 2891-2897 ◽  
Author(s):  
Ivo P. Nnane ◽  
Katsuya Kato ◽  
Yang Liu ◽  
Brian J. Long ◽  
Qing Lu ◽  
...  

Abstract The C17,20-lyase and 5α-reductase are key enzymes in the biosynthesis of androgens. The effects of novel steroidal compounds were evaluated as inhibitors against both human C17,20-lyase and 5α-reductase in vitro. The concentrations of testosterone (T) and dihydrotestosterone (DHT) in the prostate, testis and serum and changes in the tissue weights were also determined in rats treated with the novel inhibitors. L-12 and L-26 showed potent inhibition of human testicular C17,20-lyase with IC50 values of 50 and 25 nm, respectively. L-12, L-38, and I-47 showed moderate inhibition of human testicular C17,20-lyase with IC50 values of 75, 108, and 70 nm, respectively similar to ketoconazole (78 nm). Interestingly, L-6, L-26, and L-38 also showed some inhibitory activity against 5α-reductase with IC50 values of 75, 125, and 377 nm, respectively. Finasteride, an inhibitor of 5α-reductase had an IC50 value of 33 nm. However, ketoconazole did not inhibit 5α-reductase nor did finasteride inhibit C17,20-lyase. Treatment of normal male rats with several of these novel inhibitors (50 mg/kg·day, sc, for 14 consecutive days) caused about 45–91% decrease in serum, testicular and prostatic T concentration. Similarly, serum and prostatic DHT concentration were significantly decreased in rats treated with these novel compounds by 50–90% compared with controls. Surgical castration caused almost complete elimination of circulating T and DHT concentration in rat tissues. L-6 and L-12 were the most effective and reduced the wet weight of the prostate by 50%. Although future improvements in their bioavailability are necessary, these novel steroidal compounds show promise as potential agents for reducing T and DHT levels in patients with androgen dependent diseases.


2021 ◽  
Vol 11 (2) ◽  
pp. 109-120
Author(s):  
Salahuddin Salahuddin ◽  
Rahmana Emran K ◽  
Muhammad Hanafi ◽  
Andini Sundowo ◽  
Puspa Dewi NL ◽  
...  

Nowadays kinin is the most effective antimalarial drug and its used as an alternative in malaria treatment. However, toxicity of quinine restrict its use as an antimalarial drug. Lipophilicity and long half-life (t½) of quinine that reach 10-20 hours are responsible for its toxicity. The aim of this research is to obtain more polar quinine derivatives by means of hydrogen peroxide reactions to reduce the toxicity. The reactions using hydrogen peroxyde is performed analogously to the procedures reported in the literature. Extract of pure anhydrous kinin is purified in coloumn chromatography followed by structure elucidation. Synthetic product is tested in vitro against Plasmodium falciparum. The characterization of reaction products is performed with proton (1H) and carbon 13 (13C) nuclear magnetic resonance (NMR) spectroscopy. It showed that the reaction using reagents led to epoxidation of vinyl substituents of chinuclidine ring with 61,08% yields. Antimalarial test against Plasmodium falciparum obtained 1.250-2.500 μg/mL of IC50 value. The IC50 values indicated that the synthesis products were not potential for malaria treatment.


Author(s):  
S. Sujitha

Wood apple botanically identified as Limonia acidissima is an indigenous fruit with amazing nutritional and health benefits. Reports from traditional literature of Ayurveda and Siddha portrays the medicinal properties of this fruit. The scooped pulp of the ripe fruit is consumed as such or it can be made into different recipes. But inclusion of this fruit in our diet is not found as a regular practice. Many people are still unaware of the benefits of this fruit. Hence, this study was taken up to unravel the biological potencies of this fruit by conducting in vitro experiments. Phytochemicals such as alkaloids, flavonoids, phenols, saponins and ascorbic acid have been estimated. Anti-inflammatory activity of the aqueous extract of fruit pulp combined with outer rind has been evaluated through inhibition of albumin denaturation. Among the 5 different concentrations (200, 400, 600, 800, 1000 µg/ml), at 1000 µg/ml wood apple has shown 74.55% of protein denaturation inhibition which was compared with standard Diclofenac sodium. Antioxidant capacity of the extract was expressed as mg/100g ascorbic acid equivalent through phosphomolybdenum assay. Dose dependent increase in the antioxidant activity was observed. About 8 different concentrations of the aqueous extract of L. acidissima were evaluated for their cytotoxic activity on MCF 7 cell line. At a concentration of 1000 µg/ml, the extract has shown 93.43% of cytotoxicity and 6.57% of cell viability. Apoptotic induction was evaluated and confirmed by the formation of DNA ladders through DNA fragmentation assay. GCMS analysis of wood apple fruit pulp and rind revealed the presence of several phytochemicals among which many of them had therapeutic activity reported earlier.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2805-2805
Author(s):  
Yasuhiko Harada ◽  
Yuichi Ishikawa ◽  
Naomi Kawashima ◽  
Hikaru Hattori ◽  
Yohei Yamaguchi ◽  
...  

Abstract [Background] Differentiation therapy with retinoic acid (RA) has remarkably improved the cure rate for acute promyelocytic leukemia (APL). RAs are known to have anti-leukemic effect in parts of non-APL acute myelocytic leukemia (AML) cells. It has been reported that AML patient with NPM1 or IDH1/2 mutation may have sensitivity to all-trans retinoic acid (ATRA) and the clinical study with combination of chemotherapy and ATRA is conducted in NPM1 mutated AML. In addition, ATRA and a FLT3 inhibitor, quizartinib, showed synergistic activity against FLT3-ITD positive AML patients' samples and their combination therapy improved the survival of AML xenograft mouse model. Moreover, it is also reported that the presence of super-enhancer at RARA gene locus is related to high RARA mRNA expression and sensitivity to tamibarotene. Another study showed that ATRA promote cancer apoptosis in the presence of Cellular Retinoic Acid-Binding Protein 1 (CRABP1) through G1 expansion. However, the efficacy of RAs and its mechanism in non-APL AML are still largely unknown. In this study, we evaluated anti-leukemic effect of RAs on primary AML cells and explored its predictive biomarkers for the purpose of optimization of therapy for non-APL AML. [Method] We examined growth inhibitory and differentiation effects of ATRA and tamibarotene on primary AML cells in vitro. Primary AML cells were purified by density-based centrifugation and cultured with various concentrations of RAs in methylcellulose-based media including cytokines. IC50 values of RAs were calculated by luminescent cell viable assay on day7 and 14. Cell differentiation upon RAs treatment was also examined in these cells by morphology and expression of CD11b using flow cytometry analysis. We also evaluated the efficacy of combination therapy of RAs and several tyrosine kinase inhibitors, quizartinib, midstaurin and dasatinib, and assessed their synergistic effect by calculating combination index. The association of IC50 values of RAs with clinical characteristics, mRNA expressions of RARA and CRABP1, and genetic mutations were investigated. [Result] We analyzed total of 30 primary non-APL AML samples and IC50 values of ATRA and tamibarotene were lower than 5 µM in 14 of 30 (46.7 %) and 4 of 14 (28.6 %) AML cells, respectively. There were no significant difference in IC50 value of ATRA and tamibarotene by FAB subtype and chromosomal abnormalities. ATRA and tamibarotene induced differentiation in 10 of the 22 and 2 of the 9, respectively, and anti-leukemic effect of ATRA and tamibarotene were not associated with these differentiation statuses. IC50 value of ATRA and tamibarotene were significantly lower in ASXL1 (p=0.0071 and p=0.0012, respectively), SRSF2 (p=0.0101 and p=0.0113, respectively), and IDH2 (p=0.0295 and p=0.0044, respectively) mutated AML cells. FLT3-ITD mutation with high allelic ratio (>0.5) was associated with high IC50 value of ATRA (p=0.0116). Although NPM1 mutation was associated with higher IC50 value of ATRA, all of 4 patients with NPM1 mutation concurrently have FLT3-ITD mutations in this study. Other gene mutations were not correlated with RAs sensitivity. The expression of RARA mRNA weakly correlated with sensitivity of ATRA and tamibarotene (P=0.1126 and P=0.0711 respectively), but it was not significant. [Conclusion] RAs were effective in almost half of non-APL AML cells in vitro and some AML cells were sensitive to ATRA without cell differentiation. Mutation in ASXL1, SRSF2, and IDH2 were identified as predictive factors for the RAs sensitivity, whereas the expression of RARA mRNA and other gene mutations were not correlated with RAs sensitivity. Disclosures Kiyoi: Takeda Pharmaceutical Co., Ltd.: Research Funding; Phizer Japan Inc.: Research Funding; Sumitomo Dainippon Pharma Co., Ltd.: Research Funding; Chugai Pharmaceutical Co., Ltd.: Research Funding; FUJIFILM Corporation: Research Funding; Kyowa Hakko Kirin Co., Ltd.: Research Funding; Sanofi K.K.: Research Funding; Otsuka Pharmaceutical Co., Ltd.: Research Funding; Novartis Pharma K.K.: Research Funding; Zenyaku Kogyo Co., Ltd.: Research Funding; Eisai Co., Ltd.: Research Funding; Bristol-Myers Squibb: Honoraria; Celgene Corporation: Research Funding; Astellas Pharma Inc.: Research Funding; Nippon Shinyaku Co., Ltd.: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document