scholarly journals Copper(II) Anchored on Amine-Functionalized MMT: A Highly Efficient Catalytic System for the One-Pot Synthesis of Bispyrano[2,3-c]pyrazole Derivatives

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Majid Ahmadzadeh ◽  
Masoud Sadeghi ◽  
Javad Safari

In this study, preparation of pyridine-2-carboimine copper complex immobilized on amine-functionalized nanoclay montmorillonite K10 was reported. The products were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and thermogravimetric analysis (TGA). The catalytic activity of this new nanocatalyst, as a natural, renewable, inexpensive, and heterogeneous catalyst, was very effective for the four-component condensation reaction of hydrazine hydrate (or phenyl hydrazine), malononitrile, β-ketoester, and terephthalaldehyde (or isophthalaldehyde) toward the synthesis of multisubstituted bispyrano[2,3-c]pyrazole derivatives. From the viewpoint of green chemistry, the advantages of this approach are accessibility, simplicity, and high yields synthesis. The catalyst was recycled and reused four times without significant loss of activity.

2020 ◽  
Vol 22 (2) ◽  
pp. 9-19 ◽  
Author(s):  
Fangping Li ◽  
Jun Zhang ◽  
Longjiang Wang ◽  
Weijian Liu ◽  
Qahtan A. Yousif

AbstractA green procedure for the one-pot three-component synthesis of 1-amidoalkyl-2-naphthol and 3-amino-1-phenyl-1H benzo[f]chromene-2-carbonitrile derivatives from the reaction of 2-naphtol, aldehydes, and malononitrile/acetamide in the presence of a catalytic amount of Fe3O4@enamine-B(OSO3H)2 as an efficient and novel heterogeneous magnetic nanostructure catalyst is described. The catalyst was characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). These strategies possess some merits such as simple work-up method, easy preparation of the catalyst, short reaction times, good-to-high yields, and non-use of hazardous solvents during all steps of the reactions. Moreover, due to the magnetic nature of the catalyst, it was readily recovered by magnetic decantation and can be recycled at least six runs with no considerable decrease in catalytic activity.


2015 ◽  
Vol 93 (5) ◽  
pp. 546-549 ◽  
Author(s):  
Ali Reza Karimi ◽  
Meysam Sourinia ◽  
Zeinab Dalirnasab ◽  
Marzie Karimi

Silica sulfuric acid magnetic nanoparticles efficiently catalyze the one-pot, three-component reaction of isatins and malononitrile with dimedone, 1,3-dimethylbarbituric acid or 4-hydroxycoumarin in EtOH–H2O to afford the corresponding spiro[2-amino-4H-pyran-oxindole] derivatives in high yields under ultrasound irradiation at 60 °C. The heterogeneous nanocatalyst could be recovered easily from the reaction mixture using an external magnet and reused many times without significant loss of its catalytic activity.


Synthesis ◽  
2017 ◽  
Vol 49 (23) ◽  
pp. 5167-5175 ◽  
Author(s):  
Bruna Drawanz ◽  
Georgia Zimmer ◽  
Leticia Rodrigues ◽  
Andressa Nörnberg ◽  
Manfredo Hörner ◽  
...  

The one-pot reaction of 5,6,7,8-tetrahydronaphthalen-1-amine, mercaptoacetic acid, and arenealdehydes having strong and weak electron-withdrawing groups gave the corresponding 1,3-thiazolidin-4-ones (47–70%). When arenealdehydes bearing strong and weak electron-donating groups were used as precursors, the 1,4-benzothiazepin-2-ones were obtained (30–72%) by p-TsOH catalysis. All compounds are unknown and were characterized by GC-MS and NMR techniques, and available crystals by X-ray diffraction studies. The atropisomerism phenomenon was observed in several 1,3-thiazolidin-4-ones as confirmed by VTNMR method. The Tc was established as 332 K and the energy required for the interconversion of one atrop­isomer into another is around 16.8 kcal·mol–1. Chemical quantum calculation and NOESY displayed that more stable isomer has the tetrahydro­naphthalene portion below the five-ring plane. Only a small difference between isomers (–0.21 to –0.84 kcal·mol–1) was observed by calculated energy.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5479
Author(s):  
Abdallah Mahmoud ◽  
Piotr Smoleński ◽  
M. Guedes da Silva ◽  
Armando Pombeiro

The 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA) derivatives, viz. the already reported 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane 5-oxide (DAPTA=O, 1), the novel 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane-5-sulfide (DAPTA=S, 2), and 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane-5-selenide (DAPTA=Se, 3), have been synthesized under mild conditions. They are soluble in water and most common organic solvents and have been characterized using 1H and 31P NMR spectroscopy and, for 2 and 3, also by single crystal X-ray diffraction. The effect of O, S, or Se at the phosphorus atom on the structural features of the compounds has been investigated, also through the analyses of Hirshfeld surfaces. The presence of 1–3 enhances the activity of copper for the catalytic azide-alkyne cycloaddition reaction in an aqueous medium. The combination of cheaply available copper (II) acetate and compound 1 has been used as a catalyst for the one-pot and 1,4-regioselective procedure to obtain 1,2,3-triazoles with high yields and according to ‘click rules’.


2017 ◽  
Vol 10 (9) ◽  
pp. 3197-3202 ◽  
Author(s):  
Davood Azarifar ◽  
Younes Abbasi ◽  
Omolbanin Badalkhani

Leucine, a naturally occurring α-amino acid, has been found as an effective catalyst to effect the one-pot three-component condensation reaction between aromatic aldehydes, malononitrile and 5,5-dimethyl-1,3-cyclohexanedione (dimedone). Various 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile derivatives are conveniently prepared by these reactions in excellent yields. High yields, short reaction times, simple work-up, use of green and naturally occurring catalyst and solvent are the main merits of the present protocol. 


2020 ◽  
Vol 15 (2) ◽  
pp. 348-366 ◽  
Author(s):  
Ke Chen ◽  
Guangzu He ◽  
Qiong Tang ◽  
Qahtan A.Yousif

The SCMNPs@BPy-SO3H catalyst was prepared and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Vibrating Sample Magnetometry (VSM), Energy Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM). Afterwards, its capability was efficiently used to promote the one-pot, three-component synthesis of pyrano[2,3-c]pyrazole and 2-amino-3-cyano-pyrano[3,2-c]chromen-5(4H)-one derivatives. The strategy resulted in the desired products with excellent yields and short reaction times. The SCMNPs@BPy-SO3H catalyst was readily recovered using a permanent magnetic field and it was reused in six runs with a slight decrease in catalytic activity. Copyright © 2020 BCREC Group. All rights reserved 


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Hui-qiang Wang ◽  
Ming-hua Liu ◽  
Xin Luo ◽  
Yi-fan Liu ◽  
Fei-er Chen ◽  
...  

ZnFe2O4/AC composites were prepared by the one-pot hydrothermal method using the activated carbon (AC) as a carrier. The synthesis conditions were optimized by a single-factor experiment. The structural, textural, and surface properties of the adsorbent have been comprehensively characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, Brunauer–Emmett–Teller (BET) measurements, and X-ray photoelectron spectroscopy (XPS) analysis. The SO2 removal capacities of the composites were investigated via testing the adsorption capacity at the self-made desulfurization equipment. The results show that the adsorption capacity of ZnFe2O4/AC composites is much higher than that of the AC and ZnFe2O4 samples, respectively. The composite overcomes the disadvantages of the traditional sintering, showing a very high desulfurization performance. The breakthrough time was 147 min, and the sulfur adsorption capacity could reach 23.67% in the desulfurization performance test.


2014 ◽  
Vol 92 (11) ◽  
pp. 1086-1091 ◽  
Author(s):  
Khalil Tabatabaeian ◽  
Mohammad Ali Zanjanchi ◽  
Manouchehr Mamaghani ◽  
Ali Dadashi

The synthesis and characterization of a highly efficient and reusable catalyst, ruthenium immobilized in zeolite beta, are reported. The catalyst was characterized by powder X-ray diffraction, BET surface area measurements, scanning electron micrographs, Fourier-transform infrared spectroscopy, inductive coupled plasma, and elemental analysis. The supported material was used as an efficient catalyst for the one-pot three-component synthesis of 4H-benzo[b]pyrans and pyrano[c]chromenes in good yields. The catalyst was separated from the reaction mixture and reused up to five runs without significant loss of activity.


2009 ◽  
Vol 1203 ◽  
Author(s):  
Jong-Kwan Lim ◽  
Jong-Beom Baek

AbstractPurification of diamond nanopowder (DNP) was conducted in a less-destructive mild polyphosphoric acid (PPA)/phosphorous pentoxide (P2O5). The wide-angle X-ray diffraction (XRD) showed that the intensity of the characteristic diamond d-spacing (111) at 2.07 Å from purified DNP (PDNP) was fairly increased compared to pristine DNP, indicating that significant amount of carbonaceous impurities were removed. Chemical modification of pristine DNP and PDNP with 4-ethylbenzoic acid was carried out to afford 4-ethylbenzoyl-functionalized DNP (EBA-g-DNP) and PDNP (EBA-g-PDNP). The morphologies of EBA-g-DNP and EBA-g-PDNP from scanning electron microscopy (SEM) were further affirmed the feasibility of chemical modification. The results suggested that the reaction condition was indeed viable for the one-pot purification and functionalization of DNP. The resultant functionalized DNP could be useful for nanoscale additives. Hence, EBA-g-DNP and EBA-g-PDNP was brominated by using N-bromosuccinimide (NBS). The resultant N-brominated DNP and PDNP could be used as initiator for the atom transfer radical polymerization (ATRP) to introduce many polymers onto the surface of functionalized DNP and PDNP.


2020 ◽  
Vol 32 (7) ◽  
pp. 1609-1613
Author(s):  
C.B. Vagish ◽  
Karthik Kumara ◽  
N.K. Lokanath ◽  
K. Ajay Kumar ◽  
P.G. Chandrasherkar

An efficient, easy and one pot synthesis for the Friedel-Craft acetylation reaction of quinolines was developed. The reaction between 8-hydroxyquinoline and acetyl/benzoyl chloride in nitrobenzene immediately flocculates as yellow precipitate. On further addition of Lewis acid causes the Friedel-Craft acetylation leads to formation of acetylated quionlines in good yields. The structure of compound 5-acetyl-8-hydroxyquinoline (3) was confirmed by single crystal X-ray diffraction studies. The compound crystallizes in the monoclinic crystal system with the space group P21/c. The synthesized acetylated quionlines undergoes condensation reaction with aromatic aldehydes leads to 8-hydroxyquinoline chalcones derivatives. The products were characterized by spectral studies, elemental analysis and single crystal X-ray diffraction studies.


Sign in / Sign up

Export Citation Format

Share Document