scholarly journals Study on the Effects of Powder-Liquid Ratio and Cement Ratio on Mechanical Properties and Microscopic Characteristics of Polymer-Cement Composite

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zhe Huang ◽  
Jinyu Xu ◽  
Binglin Leng ◽  
Weibo Ren ◽  
Sen Chang ◽  
...  

This paper is about a study on the mechanical properties of a new polymer-cement composite (PCC) in constant elongation, tension, and shear. The study explored the effects of powder-liquid ratio and cement ratio on the mechanical properties of PCC through detecting the strength, deformation, and energy consumption of specimens under different powder-liquid ratios and cement ratios. In addition, scanning electron microscope and mercury injection apparatus were used for an in-depth analysis on the micromorphology and pore structure features of PCC under different powder-liquid ratios and cement ratios to explore the influence of powder-liquid ratio and cement ratio of the micromechanical properties of PCC. The results showed that, with the increase of powder-liquid ratio and cement ratio, the constant elongation adhesion strength of PCC decreased, and, at a high powder-liquid ratio (0.55) or a high cement ratio (0.5), the constant elongation adhesion strength of PCC completely disappeared. Meanwhile, with the increase of powder-liquid ratio and cement ratio, the tensile shear strength of PCC increased, while the deformation capacity of PCC decreased. The optimal ranges of powder-liquid ratio and cement ratio for PCC were 0.35–0.4 and 0.3-0.4, respectively. Furthermore, the increased powder-liquid ratio and cement ratio made the total pore volume decreased and pore structure refined, which improved the compactness of PCC, thus influencing the performance of PCC macroscopically. An achievement for the study is a flexible composite material, which was formulated with the polymer film as continuous base phase, as well as the inorganic composition and cement hydrates as dispersion phase. The material can effectively improve the economy and practicability of cementation of fissures for airfield pavement.

1987 ◽  
Vol 114 ◽  
Author(s):  
I. Odler

ABSTRACTA series of fiber-cement composite materials was prepared by dispersing different amounts of polyacrylnitril (PAN) fibers in portland cement suspensions of variable water/solid ratios. The samples were used to study the effect of the volume of fibers and the water-cement ratio on the physico-mechanical properties of the material. The distribution of the fibers within the cementitious matrix and the fracture mechanism were studied by SEM and compared with those existing in glass fiber-cement composites.


2015 ◽  
Vol 819 ◽  
pp. 399-404
Author(s):  
M. Madzura ◽  
M.N. Mazlee ◽  
Shamsul Baharin Jamaludin

This research presents the findings of experimental works in terms of mechanical properties and crack profile of cement composites containing quarry dust at different percentages as a partial sand replacement. The compositions of quarry dust were varied from 10 to 20 wt. % and were mixed into five different ratios. It was found that 0.45 water cement ratio was suitable to mix all proportions and values of slump were observed have been increased with the increasing percentage of quarry dust in cement composites. The compressive strength tests were carried out and the results showed that the compressive strength decreased at each 2.5 percent interval of quarry dust at 7 and 28 days of curing. However, the strength developments of cement composites were increased corresponding to the ages of curing. The crack profiles of cement composites have been analyzed to investigate the strength developments of the cement composites. According to the results, the cracks in the specimens were in shearing pattern at 10 and 12.5 wt. % of quarry dust in cement composites. Meanwhile, as the contents of quarry dust at 15, 17.5 and 20 wt. %, the specimens failed in shearing and splitting patterns. According to the findings of compressive strength and crack profile, the contents of quarry dust as a partial sand replacement is 12.5 wt. % were more suitable to be utilized in cement composite


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chuanxin Lou ◽  
Jinyu Xu ◽  
Tengjiao Wang ◽  
Weibo Ren

AbstractUtilizing methods such as scanning electron microscopy observation and mercury intrusion porosimetry, this paper investigates the basic microstructure and pore structure properties of polymer-cement composite joint sealants for pavements, and analyzes the effects and rules of various material types, ratio parameters and processing conditions. Further, the fractal characteristics and variation rules of pore size distribution are investigated for the joint sealants by introducing the fractal theory. The results show that changes in material type, ratio parameter and processing condition produce insignificant effects on the basic microstructure properties and configuration of joint sealants, with effects reflected primarily in the change of sealant pore structure. Measures like increasing the powder-liquid ratio and cement ratio, blending with sulphoaluminate cement or mica powder, adding latex powder or coupling agent, cold drawing and hot pressing, as well as ultraviolet irradiation treatment are all capable of reducing the total pore volume of joint sealants and refining their pore structure. In contrast, opposite effects are yielded when low-grade cement is used, styrene-acrylic emulsion is blended, or plasticizer is added. Additionally, after blending with talc powder or adding carbon fiber additive, the total pore volume of joint sealants remains basically unchanged or reduced, despite the coarsened pore structure. The total pore volume of joint sealants increases after wet–dry cycling treatment, while no obvious change in the pore size distribution is observed. Pore size distribution of the studied joint sealants presents distinct fractal characteristics, and the corresponding fractal dimension of pore surface area ranges between 2.6 and 2.8.


2019 ◽  
Vol 14 ◽  
pp. 155892501987470 ◽  
Author(s):  
Jinghai Zhou ◽  
Tianbei Kang ◽  
Fengchi Wang

The pore structure is one of the major factors affecting the mechanical properties of waste fiber recycled concrete. In this article, the pore structure and strength performance of waste fiber recycled concrete are experimentally studied. The design variables are water–cement ratio, recycled aggregate replacement rate, waste fiber length, and volume fraction of waste fibers. The pore structure characteristic parameters of waste fiber recycled concrete are investigated using mercury intrusion porosimetry test and fractal theory. The complex distribution of pore structure in space is quantitatively described by fractal dimension, and the pore structure is comprehensively evaluated. The results show that the water–cement ratio has the largest influence on the pore structure, and the fiber length has the least influence. The optimum volume fraction of waste fibers is 0.12%. There is an obvious linear relationship between the pore volume fractal dimension and strength. With the increase in the fractal dimensions, the compressive and splitting tensile strengths increase. Macroscopic mechanical properties of waste fiber recycled concrete can be predicted by the pore structure.


2010 ◽  
Vol 7 (2) ◽  
pp. 57
Author(s):  
Jamaludin Kasim ◽  
Shaikh Abdul Karim Yamani ◽  
Ahmad Firdaus Mat Hedzir ◽  
Ahmad Syafiq Badrul Hisham ◽  
Mohd Arif Fikri Mohamad Adnan

An experimental investigation was performed to evaluate the properties of cement-bonded particleboard made from Sesendok wood. The target board density was set at a standard 1200 kg m". The effect offarticle size, wood to cement ratio and the addition ofsodium silicate and aluminium silicate on the wood cement board properties has been evaluated. A change ofparticle size from 1.0 mm to 2.0 mm has a significant effect on the mechanical properties, however the physical properties deteriorate. Increasing the wood to cement ratio from 1:2.25 to 1:3 decreases the modulus ofrupture (MOR) by 11% and the addition ofsodium silicate improves valuesfurther by about 28% compared to the addition ofaluminum silicate. The modulus ofelasticity (MOE) in general increases with increasing cement content, but is not significantly affected by the addition ofsodium silicate or aluminium silicate, although the addition of their mixture (sodium silicate andaluminium silicate) consistentlyyields greater MOE values. Water absorption and thickness swelling is significantly affected by the inclusion ofadditives and better values are attained using higher wood to cement ratios.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 41
Author(s):  
Yin-Yu Chang ◽  
Cheng-Hsi Chung

Multi-element material coating systems have received much attention for improving the mechanical performance in industry. However, they are still focused on ternary systems and seldom beyond quaternary ones. High entropy alloy (HEA) bulk material and thin films are systems that are each comprised of at least five principal metal elements in equally matched proportions, and some of them are found possessing much higher strength than traditional alloys. In this study, CrVTiNbZr high entropy alloy and nitrogen contained CrVTiNbZr(N) nitride coatings were synthesized using high ionization cathodic-arc deposition. A chromium-vanadium alloy target, a titanium-niobium alloy target and a pure zirconium target were used for the deposition. By controlling the nitrogen content and cathode current, the CrNbTiVZr(N) coating with gradient or multilayered composition control possessed different microstructures and mechanical properties. The effect of the nitrogen content on the chemical composition, microstructure and mechanical properties of the CrVTiNbZr(N) coatings was investigated. Compact columnar microstructure was obtained for the synthesized CrVTiNbZr(N) coatings. The CrVTiNbZrN coating (HEAN-N165), which was deposited with nitrogen flow rate of 165 standard cubic centimeters per minute (sccm), exhibited slightly blurred columnar and multilayered structures containing CrVN, TiNbN and ZrN. The design of multilayered CrVTiNbZrN coatings showed good adhesion strength. Improvement of adhesion strength was obtained with composition-gradient interlayers. The CrVTiNbZrN coating with nitrogen content higher than 50 at.% possessed the highest hardness (25.2 GPa) and the resistance to plastic deformation H3/E*2 (0.2 GPa) value, and therefore the lowest wear rate was obtained because of high abrasion wear resistance.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


Author(s):  
Longzhe Jin ◽  
Jianguo Liu ◽  
Jingzhong Guo ◽  
Jiaying Wang ◽  
Tianyang Wang

AbstractTo investigate the factors affecting the wettability of copper mine blasting dust, the primary blasting dust was collected from an open-pit copper mine and separated into hydrophilic blasting dust (HLBD) and hydrophobic blasting dust (HBBD) using water flotation method. The physicochemical properties of HLBD and HBBD were measured and compared with each other. The properties included particle size distributions (PSDs), micromorphologies, pore structures, mineral components and surface organic carbon functional groups. The results show that particle size and pore structure of the blasting dust are the main factors affecting its wettability. Specifically, particle size of HBBD is smaller than that of HLBD, and their respiratory dust (less than 10 µm) accounts for 61.74 vol% and 53.00 vol%, respectively. The pore structure of HBBD is more developed, and the total pore volume of HBBD is 1.66 times larger than that of HLBD. The identical mineral compositions were detected in HLBD and HBBD by X-rays diffraction (XRD); however, the surface organic hydrophobic component of HBBD is slightly larger than that of HLBD, this may be the reason for the poor wettability of HBBD. This study is significant to understand the effects of physicochemical properties of copper mine blasting dust on its wettability.


Sign in / Sign up

Export Citation Format

Share Document