scholarly journals X-Ray CT Investigation on Fractal Characteristics of Fine-Grained Tailing Sand in Fujian’s Makeng: Insight into the Mesoscopic Seepage Failure

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Dayu Long ◽  
Changhong Li ◽  
Yu Wang ◽  
Yueqi Shi

This work is aimed at revealing the mesophysical process and mechanical behaviors of fine-grained tailing sand during seepage failure. The macroscopic seepage tests combined with posttest X-ray computed tomography (CT) were employed to study the fractal characteristics of mesostructure. Results show that before and after the seepage failure of fine-grained tailing sand, fractal of pore distribution ( D pd ) and fractal dimension of pore size ( D ps ) show a relatively obvious positive correlation with porosity. Tailing particles migrate along the seepage direction during the seepage process, resulting in the gradual decrease of D pd and pore distribution area. The D ps reflects the variation characteristics of pore number distribution with different pore sizes. The increase in D ps leads to a decrease in the uniformity of pore size and an increase in the size difference between pores. The mass fractal dimension ( D m ) of fine-grained tailing sand samples ranges from 1.6472 to 1.8256. With the increase of D m , the coefficient of uniformity ( C u ) of tailing sand tends to increase. The D m method can discern the seepage failure type of fine-grained tailing sand, and it is more accurate than the traditional method. This study provides a reference for the prevention and control of the seepage failure of tailing dam.

2021 ◽  
Vol 5 (4) ◽  
pp. 152
Author(s):  
Shao-Heng He ◽  
Zhi Ding ◽  
Hai-Bo Hu ◽  
Min Gao

In this study, a series of nuclear magnetic resonance (NMR) tests was conducted on calcareous sand, quartz sand, and glass bead with a wide range of grain sizes, to understand the effect of grain size on the micro-pore structure and fractal characteristics of the carbonate-based sand and silicate-based sand. The pore size distribution (PSD) of the tested materials were obtained from the NMR T2 spectra, and fractal theory was introduced to describe the fractal properties of PSD. Results demonstrate that grain size has a significant effect on the PSD of carbonate-based sand and silicate-based sand. As grain size increases, the PSD of sands evolves from a binary structure with two peaks to a ternary structure with three peaks. The increase in the grain size can cause a remarkable increase in the maximum pore size. It is also found that the more irregular the particle shape, the better the continuity between the large and medium pores. In addition, grain size has a considerable effect on the fractal dimension of the micro-pore structure. The increase of grain size can lead to a significant increase in the heterogeneity and fractal dimension in PSD for calcareous sand, quartz sand and glass bead.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 752 ◽  
Author(s):  
Gaoliang Tao ◽  
Yin Chen ◽  
Henglin Xiao ◽  
Qingsheng Chen ◽  
Juan Wan

Accurate determination of soil-water characteristic curve (SWCC) is of immense importance for understanding the mechanical behavior of unsaturated soils. Due to the difficulty and long duration of experimental procedures, it is of great significance to estimate the SWCC by indirect methods. To address this issue, in this article an effective fractal method is proposed for predicting the SWCC based on mercury intrusion porosimeter (MIP) data. Only two characteristic parameters, namely the fractal dimension and air-entry value, are needed in the presented approach. Detailed procedures for determining the parameters are clearly elaborated. Due to the influence of sample size difference on the equivalent connected pore size, a sample scale effect coefficient is proposed to predict air-entry values. The concept of “critical pore size” is introduced to obtain the optimal fractal dimension, which can accurately reflect the fractal behaviour of SWCC samples. By comparisons between predicted and experimental SWCCs, the validation of the proposed method is verified. The comparisons reveal the good agreement between the proposed approach and laboratory experiments.


2021 ◽  
Vol 21 (1) ◽  
pp. 274-283
Author(s):  
Liang Liu ◽  
Wuling Mo ◽  
Min Wang ◽  
Nengwu Zhou ◽  
Yu Yan ◽  
...  

The fractal characteristics of marine shale from the Middle-Upper Ordovician Wulalike Formation (O2w) in the southwest margin of the Ordos Basin are studied. Based on low-temperature nitrogen adsorption experiments, the FHH (Frenkel-Halsey-Hill) model was employed to investigate the relationship between the marine shale composition, such as TOC, mineral content and shale gas content, and pore structure parameters, such as BET specific surface area, average pore diameter, porosity and fractal dimension. The results show that the pore size distribution curve of shale slowly decreased after the pore size was greater than 50 nm, the pore size distribution showed multiple peaks, and the peak value was mainly in the range of 2–10 nm. Most pores are nanopores, although the pore type and shape are different. Two different fractal dimensions D1 and D2 are obtained from the two segments with relative pressures of 0–0.5 and 0.5–1.0, respectively: the D1 range is 2.77–2.82, and the D2 range is 2.63–2.66. As D1 is larger than D2, the pore structure of small pores is more uniform than that of large pores in the shale samples. The relationship between the fractal dimensions D1 and D2 and the total organic carbon (TOC) content is a convex curve. Fractal dimension D reaches its maximum when TOC is 0.53 wt.%. Fractal dimension D decreases with increasing specific surface area, porosity and average pore size. The fractal dimension has a different influence on the gas storage and migration in shale; the larger the fractal dimension is, the stronger the heterogeneity and the more complex the pore structure, and this outcome is conducive to the storage of gas in shale but not beneficial to the permeability and production of gas.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3238
Author(s):  
Yue Li ◽  
Aiqin Shen ◽  
Hua Wu

In this study, we focused on exploring the correlations between the pore surface fractal dimensions and the pore structure parameters, strength and shrinkage properties of basalt fiber-reinforced concrete (BFRC). The pore structure of BFRCs with various fiber contents and fiber lengths was investigated using mercury intrusion porosimetry (MIP) measurements. Through Zhang’s model, the fractal characteristics of BFRCs in the whole pore size range and in different pore size ranges were calculated from the MIP test data. The results showed that the addition of BF increased the total porosity, total pore volume and pore area but decreased the average pore diameter, indicating that BFs refined the pore structure of the concrete. BFRC presented obvious fractal characteristics in the entire pore-size range and individual pore-size ranges; generally, the fractal dimension increased with increasing fiber content. Moreover, correlation analysis suggested that the fractal dimension of BFRC in the whole pore-size range (FD) was closely related to the fractal dimension in the macropore region (Dm) and average pore diameter (APD). The influence of pore structure factors on mechanical strength and shrinkage was studied by grey correlation theory, and the results showed that Dm showed positive correlations with strength and fracture energy, with increasing Dm tending to strengthen and toughen the concrete. An increase in fiber content and length was detrimental to reducing the drying shrinkage strain. In the transition pore region, the fractal dimension (Dt) at diameters ranging from 20 to 50 nm and shrinkage strain exhibited a highly linear relation. These results merit careful consideration in macro-property evaluation by using the pore surface fractal dimension in a specific region instead of the whole region. Finally, grey target theory was applied to evaluate the rank of the mechanical strength and shrinkage of concrete, and the results showed that the overall properties of concrete with a BF length of 18 mm and a BF content of 0.06% ranked the best.


Author(s):  
Steven D. Toteda

Zirconia oxygen sensors, in such applications as power plants and automobiles, generally utilize platinum electrodes for the catalytic reaction of dissociating O2 at the surface. The microstructure of the platinum electrode defines the resulting electrical response. The electrode must be porous enough to allow the oxygen to reach the zirconia surface while still remaining electrically continuous. At low sintering temperatures, the platinum is highly porous and fine grained. The platinum particles sinter together as the firing temperatures are increased. As the sintering temperatures are raised even further, the surface of the platinum begins to facet with lower energy surfaces. These microstructural changes can be seen in Figures 1 and 2, but the goal of the work is to characterize the microstructure by its fractal dimension and then relate the fractal dimension to the electrical response. The sensors were fabricated from zirconia powder stabilized in the cubic phase with 8 mol% percent yttria. Each substrate was sintered for 14 hours at 1200°C. The resulting zirconia pellets, 13mm in diameter and 2mm in thickness, were roughly 97 to 98 percent of theoretical density. The Engelhard #6082 platinum paste was applied to the zirconia disks after they were mechanically polished ( diamond). The electrodes were then sintered at temperatures ranging from 600°C to 1000°C. Each sensor was tested to determine the impedance response from 1Hz to 5,000Hz. These frequencies correspond to the electrode at the test temperature of 600°C.


2019 ◽  
Author(s):  
KAIKAI MA ◽  
Peng Li ◽  
John Xin ◽  
Yongwei Chen ◽  
Zhijie Chen ◽  
...  

Creating crystalline porous materials with large pores is typically challenging due to undesired interpen-etration, staggered stacking, or weakened framework stability. Here, we report a pore size expansion strategy by self-recognizing π-π stacking interactions in a series of two-dimensional (2D) hydrogen–bonded organic frameworks (HOFs), HOF-10x (x=0,1,2), self-assembled from pyrene-based tectons with systematic elongation of π-conjugated molecular arms. This strategy successfully avoids interpene-tration or staggered stacking and expands the pore size of HOF materials to access mesoporous HOF-102, which features a surface area of ~ 2,500 m2/g and the largest pore volume (1.3 cm3/g) to date among all reported HOFs. More importantly, HOF-102 shows significantly enhanced thermal and chemical stability as evidenced by powder x-ray diffraction and N2 isotherms after treatments in chal-lenging conditions. Such stability enables the adsorption of dyes and cytochrome c from aqueous media by HOF-102 and affords a processible HOF-102/fiber composite for the efficient photochemical detox-ification of a mustard gas simulant.


Author(s):  
Ran Zhao ◽  
Hong Cai ◽  
Hua Tian ◽  
Ke Zhang

Abstract Purpose The application of the anatomical parameters of the contralateral hip joint to guide the preoperative template of the affected side relies on the bilateral hip symmetry. We investigated the bilateral hip symmetry and range of anatomical variations by measurement and comparison of bilateral hip anatomical parameters. Methods This study included 224 patients (448 hips) who were diagnosed with osteoarthritis (OA) and avascular necrosis (AVN) of the femur head, and underwent bilateral primary total hip arthroplasty (THA) in our hospital from January 2012 to August 2020. Imaging data included 224 patients X-ray and 30 CT data at the end of the cohort. Anatomical parameters, including the acetabular abduction angle and trochanteric height, were measured using the Noble method. Postoperative measurements included stem size, difference of leg length and offset. Results Except for the isthmus width, there were no significant differences in the anatomical morphology of the hip joint. Among the demographic factors, there was a correlation between body weight and NSA. Among various anatomical parameters, a correlation was present between medullary cavity widths of T + 20, T, and T − 20. The difference in the use of stem size is not due to the morphological difference of bilateral medullary cavity, but due to the different of 1- or 2-stage surgery. Conclusion Bilateral symmetry was present among the patients with normal morphology of the hip medullary cavity, theoretically confirming the feasibility of structural reconstruction of the hip joint using the hip joint on the uninjured side. Additionally, the difference in the morphology of the hip medullary cavity is not present in a single plane but is synergistically affected by multiple adjacent planes.


Fractals ◽  
2019 ◽  
Vol 27 (08) ◽  
pp. 1950142
Author(s):  
JINZE XU ◽  
KELIU WU ◽  
RAN LI ◽  
ZANDONG LI ◽  
JING LI ◽  
...  

Effect of nanoscale pore size distribution (PSD) on shale gas production is one of the challenges to be addressed by the industry. An improved approach to study multi-scale real gas transport in fractal shale rocks is proposed to bridge nanoscale PSD and gas filed production. This approach is well validated with field tests. Results indicate the gas production is underestimated without considering a nanoscale PSD. A PSD with a larger fractal dimension in pore size and variance yields a higher fraction of large pores; this leads to a better gas transport capacity; this is owing to a higher free gas transport ratio. A PSD with a smaller fractal dimension yields a lower cumulative gas production; this is because a smaller fractal dimension results in the reduction of gas transport efficiency. With an increase in the fractal dimension in pore size and variance, an apparent permeability-shifting effect is less obvious, and the sensitivity of this effect to a nanoscale PSD is also impaired. Higher fractal dimensions and variances result in higher cumulative gas production and a lower sensitivity of gas production to a nanoscale PSD, which is due to a better gas transport efficiency. The shale apparent permeability-shifting effect to nanoscale is more sensitive to a nanoscale PSD under a higher initial reservoir pressure, which makes gas production more sensitive to a nanoscale PSD. The findings of this study can help to better understand the influence of a nanoscale PSD on gas flow capacity and gas production.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 461
Author(s):  
Konrad Kosiba ◽  
Konda Gokuldoss Prashanth ◽  
Sergio Scudino

The phase and microstructure formation as well as mechanical properties of the rapidly solidified Mg67Ag33 (at. %) alloy were investigated. Owing to kinetic constraints effective during rapid cooling, the formation of equilibrium phases is suppressed. Instead, the microstructure is mainly composed of oversaturated hexagonal closest packed Mg-based dendrites surrounded by a mixture of phases, as probed by X-ray diffraction, electron microscopy and energy dispersive X-ray spectroscopy. A possible non-equilibrium phase diagram is suggested. Mainly because of the fine-grained dendritic and interdendritic microstructure, the material shows appreciable mechanical properties, such as a compressive yield strength and Young’s modulus of 245 ± 5 MPa and 63 ± 2 GPa, respectively. Due to this low Young’s modulus, the Mg67Ag33 alloy has potential for usage as biomaterial and challenges ahead, such as biomechanical compatibility, biodegradability and antibacterial properties are outlined.


Sign in / Sign up

Export Citation Format

Share Document