scholarly journals Network Pharmacology Analysis of the Therapeutic Mechanisms Underlying Beimu-Gualou Formula Activity against Bronchiectasis with In Silico Molecular Docking Validation

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Xin Shen ◽  
Hong Li ◽  
Wen-Jun Zou ◽  
Jian-Ming Wu ◽  
Long Wang ◽  
...  

Background. The classical Chinese herbal prescription Beimu-Gualou formula (BMGLF) has been diffusely applied to the treatment of respiratory diseases, including bronchiectasis. Although concerning bronchiectasis the effects and mechanisms of action of the BMGLF constituents have been partially elucidated, it remains to be determined how the formula in its entirety exerts therapeutic effects. Methods. In this study, the multitarget mechanisms of BMGLF against bronchiectasis were predicted with network pharmacology analysis. Using prepared data, a drug-target interaction network was established and subsequently the core therapeutic targets of BMGLF were identified. Furthermore, the biological function and pathway enrichment of potential targets were analyzed to evaluate the therapeutic effects and pivotal signaling pathways of BMGLF. Finally, virtual molecular docking was performed to assess the affinities of compounds for the candidate targets. Results. The therapeutic action of BMGLF against bronchiectasis involves 18 core target proteins, including the aforementioned candidates (i.e., ALB, ICAM1, IL10, and MAPK1), which are assumed to be related to biological processes such as drug response, cellular response to lipopolysaccharide, immune response, and positive regulation of NF-κB activity in bronchiectasis. Among the top 20 signaling pathways identified, mechanisms of action appear to be primarily related to Chagas disease, allograft rejection, hepatitis B, and inflammatory bowel disease. Conclusion. In summary, using a network pharmacology approach, we initially predicted the complex regulatory profile of BMGLF against bronchiectasis in which multilink suppression of immune/inflammatory responses plays an essential role. These results may provide a basis for novel pharmacotherapeutic approaches for bronchiectasis.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiao Liang ◽  
Chang-Shun Liu ◽  
Ting Xia ◽  
Qing-Fa Tang ◽  
Xiao-Mei Tan

The decoction is an important dosage form of traditional Chinese medicine (TCM) administration. The Mahuang Fuzi Xixin decoction (MFXD) is widely used to treat allergic rhinitis (AR) in China. However, its active compounds and therapeutic mechanisms are unclear. The aim of this study was to establish an integrative method to identify the bioactive compounds and reveal the mechanisms of action of MFXD. LC-MS/MS was used to identify the compounds in MFXD, followed by screening for oral bioavailability. TCMSP, BindingDB, STRING, DAVID, and KEGG databases and algorithms were used to gather information. Cytoscape was used to visualize the networks. Twenty-four bioactive compounds were identified, and thirty-seven predicted targets of these compounds were associated with AR. DAVID analysis suggested that these compounds exert their therapeutic effects by modulating the Fc epsilon RI, B-cell receptor, Toll-like receptor, TNF, NF-κB, and T-cell receptor signaling pathways. The PI3K/AKT and cAMP signaling pathways were also implicated. Ten of the identified compounds, quercetin, pseudoephedrine, ephedrine, β-asarone, methylephedrine, α-linolenic acid, cathine, ferulic acid, nardosinone, and higenamine, seemed to account for most of the beneficial effects of MFXD in AR. This study showed that LC-MS/MS followed by network pharmacology analysis is useful to elucidate the complex mechanisms of action of TCM formulas.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ping Yang ◽  
Haifeng He ◽  
Shangfu Xu ◽  
Ping Liu ◽  
Xinyu Bai

Objective. Hua-Feng-Dan (HFD) is a Chinese medicine for stroke. This study is to predict and verify potential molecular targets and pathways of HFD against stroke using network pharmacology. Methods. The TCMSP database and TCMID were used to search for the active ingredients of HFD, and GeneCards and DrugBank databases were used to search for stroke-related target genes to construct the “component-target-disease” by Cytoscape 3.7.1, which was further filtered by MCODE to build a core network. The STRING database was used to obtain interrelationships by topology and to construct a protein-protein interaction network. GO and KEGG were carried out through DAVID Bioinformatics. Autodock 4.2 was used for molecular docking. BaseSpace was used to correlate target genes with the GEO database. Results. Based on OB ≥ 30% and DL ≥ 0.18, 42 active ingredients were extracted from HFD, and 107 associated targets were obtained. PPI network and Cytoscape analysis identified 22 key targets. GO analysis suggested 51 cellular biological processes, and KEGG suggested that 60 pathways were related to the antistroke mechanism of HFD, with p53, PI3K-Akt, and apoptosis signaling pathways being most important for HFD effects. Molecular docking verified interactions between the core target (CASP8, CASP9, MDM2, CYCS, RELA, and CCND1) and the active ingredients (beta-sitosterol, luteolin, baicalein, and wogonin). The identified gene targets were highly correlated with the GEO biosets, and the stroke-protection effects of Xuesaitong in the database were verified by identified targets. Conclusion. HFD could regulate the symptoms of stroke through signaling pathways with core targets. This work provided a bioinformatic method to clarify the antistroke mechanism of HFD, and the identified core targets could be valuable to evaluate the antistroke effects of traditional Chinese medicines.


2021 ◽  
Author(s):  
Zhiqiang Chen ◽  
Tong Lin ◽  
Xiaozhong Liao ◽  
Zeyun Li ◽  
Ruiting Lin ◽  
...  

Abstract Background: Cholangiocarcinoma refers to an epithelial cell malignancy with poor prognosis. Yinchenhao decoction (YCHD) showed positive effects on cancers, and associations between YCHD and cholangiocarcinoma remain unclear. This study aimed to screen out the effective active components of Yinchenhao decoction (YCHD) using network pharmacology, estimate their potential targets, screen out the pathways, as well as delve into the potential mechanisms on treating cholangiocarcinoma. Methods: By the traditional Chinese medicine system pharmacology database and analysis platform (TCMSP) as well as literature review, the major active components and their corresponding targets were estimated and screened out. Using the software Cytoscape 3.6.0, a visual network was established using the active components of YCHD and the targets of cholangiocarcinoma. Based on STRING online database, the protein interaction network of vital targets was built and analyzed. With the Database for Annotation, Visualization, and Integrated Discovery (DAVID) server, the gene ontology (GO) biological processes and the Kyoto encyclopedia of genes and genomes (KEGG) signaling pathways of the targets enrichment were performed. The AutoDock Vina was used to perform molecular docking and calculate the binding affinity. The PyMOL software was utilized to visualize the docking results of active compounds and protein targets. In vivo experiment, the IC50 values and apoptosis rate in PI-A cells were detected using CCK-8 kit and Cell Cycle Detection Kit. The predicted targets were verified by the real-time PCR and western blot methods. Results: 32 effective active components with anti-tumor effects of YCHD were sifted in total, covering 209 targets, 96 of which were associated with cancer. Quercetin, kaempferol, beta-sitosterol, isorhamnetin, and stigmasterol were identified as the vital active compounds, and AKT1, IL6, MAPK1, TP53 as well as VEGFA were considered as the major targets. The molecular docking revealed that these active compounds and targets showed good binding interactions. These 96 putative targets exerted therapeutic effects on cancer by regulating signaling pathways (e.g., hepatitis B, the MAPK signaling pathway, the PI3K-Akt signaling pathway, and MicroRNAs in cancer). Our in vivo experimental results confirmed that YCHD showed therapeutic effects on cholangiocarcinoma by decreasing IC50 values, down-regulating apoptosis rate of cholangiocarcinoma cells, and lowering protein expressions. Conclusion:As predicted by network pharmacology strategy and validated by the experimental results, YCHD exerts anti-tumor effectsthrough multiple components, targets, and pathways, thereby providing novel ideas and clues for the development of preparations and the treatment of cholangiocarcinoma.


2021 ◽  
Vol 14 (9) ◽  
pp. 880
Author(s):  
Minjee Kim ◽  
Hanul Choi ◽  
Sumin Kim ◽  
Lin Woo Kang ◽  
Young Bong Kim

The influenza virus is a constantly evolving pathogen that challenges medical and public health systems. Traditionally, curcumin has been used to treat airway inflammatory diseases, such as bronchitis and pneumonia. To elucidate common targets of curcumin and influenza infection and underlying mechanisms, we employed network pharmacology and molecular docking approaches and confirmed results using in vitro experiments. Biological targets of curcumin and influenza were collected, and potential targets were identified by constructing compound–disease target (C-D) and protein–protein interaction (PPI) networks. The ligand–target interaction was determined using the molecular docking method, and in vitro antiviral experiments and target confirmation were conducted to evaluate curcumin’s effects on influenza. Our network and pathway analyses implicated the four targets of AKT1, RELA, MAPK1, and TP53 that could be involved in the inhibitory effects of curcumin on influenza. The binding energy calculations of each ligand–target interaction in the molecular docking showed that curcumin bound to AKT1 with the highest affinity among the four targets. In vitro experiments, in which influenza virus-infected MDCK cells were pre-, co-, or post-treated with curcumin, confirmed curcumin’s prophylactic and therapeutic effects. Influenza virus induction increased the level of mRNA expression of AKT in MDCK cells, and the level was attenuated by curcumin treatment. Collectively, our findings identified potential targets of curcumin against influenza and suggest curcumin as a potential therapy for influenza infection.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sizhen Gu ◽  
Yan Xue ◽  
Yang Gao ◽  
Shuyang Shen ◽  
Yuli Zhang ◽  
...  

Abstract Oral administration of indigo naturalis (IN) can induce remission in ulcerative colitis (UC); however, the underlying mechanism remains unknown. The main active components and targets of IN were obtained by searching three traditional Chinese medicine network databases such as TCMSP and five Targets fishing databases such as PharmMapper. UC disease targets were obtained from three disease databases such as DrugBank,combined with four GEO gene chips. IN-UC targets were identified by matching the two. A protein–protein interaction network was constructed, and the core targets were screened according to the topological structure. GO and KEGG enrichment analysis and bioGPS localization were performed,and an Herbs-Components-Targets network, a Compound Targets-Organs location network, and a Core Targets-Signal Pathways network were established. Molecular docking technology was used to verify the main compounds-targets. Ten core active components and 184 compound targets of IN-UC, of which 43 were core targets, were enriched and analyzed by bioGPS, GO, and KEGG. The therapeutic effect of IN on UC may involve activation of systemic immunity, which is involved in the regulation of nuclear transcription, protein phosphorylation, cytokine activity, reactive oxygen metabolism, epithelial cell proliferation, and cell apoptosis through Th17 cell differentiation, the Jak-STAT and IL-17 signaling pathways, toll-like and NOD-like receptors, and other cellular and innate immune signaling pathways. The molecular mechanism underlying the effect of IN on inducing UC remission was predicted using a network pharmacology method, thereby providing a theoretical basis for further study of the effective components and mechanism of IN in the treatment of UC.


2021 ◽  
Vol 16 (2) ◽  
pp. 1934578X2199171
Author(s):  
ZiXin Yuan ◽  
Can Zeng ◽  
Bing Yu ◽  
Ying Zhang ◽  
TianShun Wang ◽  
...  

To investigate the mechanism of action of components of Yinma Jiedu granules in the treatment of coronavirus disease 2019 (COVID-19) using network pharmacology and molecular docking. The main chemical components of Yinma Jiedu granules were collected in the literature and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database. Using the SwissTargetPrediction database, the targets of the active component were identified and further correlated to the targets of COVID-19 through the GeneCards database. The overlapping targets of Yinma Jiedu granules components and COVID-19 were identified as the research target. Using the Database for Annotation, Visualization and Integrated Discovery database to carry out the target gene function Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway annotation and Cytoscape 3.6.1 software was used to construct a “component-target-pathway” network. The protein-protein interaction network was built using Search Tool for the Retrieval of Interacting Genes/Proteins database. Using Discovery Studio 2016 Client software to study the virtual docking of key protein and active components. One hundred active components were screened from the Yinma Jiedu Granules that involved 67 targets, including mitogen-activated protein kinase 3 (MAPK3), epidermal growth factor receptor, tumor necrosis factor, tumor protein 53, and MAPK1. These targets affected 109 signaling pathways including hypoxia-inducible factor-1, apoptosis, and Toll-like receptor signaling pathways. Molecular docking results showed that the screened active components have a strong binding ability to the key targets. In this study, through network pharmacology and molecular docking, we justified the multicomponent, multitarget, and multipathways of Yinma Jiedu Granules in the treatment of COVID-19.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ning Zhu ◽  
Bingwu Huang ◽  
Wenbing Jiang

Vitamin C (ascorbic acid) is a nutrient used to treat cardiovascular disease (CVD). However, the pharmacological targets of vitamin C and the mechanisms underlying the therapeutic effects of vitamin C on CVD remain to be elucidated. In this study, we used network pharmacology approach to investigate the pharmacological mechanisms of vitamin C for the treatment of CVD. The core targets, major hubs, enriched biological processes, and key signaling pathways were identified. A protein-protein interaction network and an interaction diagram of core target-related pathways were constructed. Three core targets were identified, including phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform, signal transducer and activator of transcription-3 (STAT3), and prothrombin. The GO and KEGG analyses identified top 20 enriched biological processes and signaling pathways involved in the therapeutic effects of vitamin C on CVD. The JAK-STAT, STAT, PD1, EGFR, FoxO, and chemokines signaling pathways may be highly involved in the protective effects of vitamin C against CVD. In conclusion, our bioinformatics analyses provided evidence on the possible therapeutic mechanisms of vitamin C in CVD treatment, which may contribute to the development of novel drugs for CVD.


Author(s):  
Rong Zhao ◽  
Meng-Meng Zhang ◽  
Dan Wang ◽  
Wei Peng ◽  
Qing Zhang ◽  
...  

Background: Zanthoxylum bungeanum Maxim., a traditional Chinese herbal medicine, has been reported to possess therapeutic effects on diseases induced by oxidative stress (DOS), such as atherosclerosis and diabetes complication. However, the active components and its related mechanisms are still not systematically reported. Objective: The current study was aimed to explore the main active ingredients and its molecular mechanisms of Z. bungeanum for treating DOS using network pharmacology combined with molecular docking simulation. Methods: The active components of Z. bungeanum pericarps, in addition to the interacting targets, were identified from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. These components were filtered using the parameters of oral bioavailability and drug-likeness, and the targets related to DOS were obtained from the Genecards and OMIM database. Furthermore, the overlapping genes were obtained, and a protein-protein interaction was visualized using the STRING database. Next, the Cytoscape software was employed to build a disease/drug/component/target network, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using R software. Finally, the potential active compounds and their related targets were validated using molecular docking technology. Results: A total of 61 active compounds, 280 intersection genes, and 105 signaling pathways were obtained. Functional enrichment analysis suggested that DOS occurs possibly through the regulation of many biological pathways, such as AGERAGE and HIF-1 signaling pathways. Thirty of the identical target genes showed obvious compact relationships with others in the STRING analysis. Three active compounds, quercetin, diosmetin, and beta-sitosterol, interacting with the four key targets, exhibited strong affinities. Conclusion: The findings of this study not only indicate the main mechanisms involving in the oxidative stress-induced diseases, but also provide the basis for further research on the active components of Z. bungeanum for treating DOS.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Kun xia Hu ◽  
Xi Duan ◽  
Li zhu Han ◽  
Hong ye Ju ◽  
Bin Wang ◽  
...  

In this study, allergic rhinitis (AR) disease targets and Xiang Ju tablet-associated targets were determined through the use of databases for the identification of putative therapeutic targets and then combined. After the production of a putative therapeutic target interaction network for Xiang Ju tablets against AR, topological analysis was used to determine the core targets of Xiang Ju tablets in AR treatment. For all putative therapeutic targets, analyses of biological function and pathway enrichment were performed to optimize the biological processes and key signaling pathways of Xiang Ju tablets in AR treatment. The top 5 therapeutic targets of Xiang Ju tablets in AR treatment were identified and included CXCL8, IL1B, IL6, IL10, and TNF. The biological processes, molecular functions, and cell composition related to the use of Xiang Ju tablets in AR treatment were predominantly associated with cytokine production, regulation of protein secretion, and regulation of peptide secretion; cytokine activity, cytokine receptor binding, and receptor ligand activity; and platelet alpha granule lumen, collagen-containing extracellular matrix, and platelet alpha granule. In addition, the top 64 key signaling pathways were identified.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zijin Xu ◽  
Susu Lin ◽  
Junjie Gong ◽  
Peishi Feng ◽  
Yifeng Cao ◽  
...  

Background: Non-alcoholic fatty liver disease (NAFLD) is a burgeoning health problem but no drug has been approved for its treatment. Animal experiments and clinical trials have demonstrated the beneficial of saffron on NAFLD. However, the bioactive ingredients and therapeutic targets of saffron on NAFLD are unclear.Purpose: This study aimed to identify the bioactive ingredients of saffron responsible for its effects on NAFLD and explore its therapy targets through network pharmacology combined with experimental tests.Methods: Various network databases were searched to identify bioactive ingredients of saffron and identify NAFLD-related targets. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were conducted to enrich functions and molecular pathways of common targets and the STRING database was used to establish a protein-protein interaction network (PPI). The effect of crocetin (CCT) on NAFLD was evaluated in a mouse model of NAFLD by measuring the biomarkers of lipid, liver and renal function, oxidative stress, and inflammation. Liver histopathology was performed to evaluate liver injury. Nuclear factor erythroid-related factor (Nrf2) and hemeoxygenase-1 (HO-1) were examined to elucidate underlying mechanism for the protective effect of saffron against NAFLD.Results: A total of nine bioactive ingredients of saffron, including CCT, with 206 common targets showed therapeutic effects on NAFLD. Oxidative stress and diabetes related signaling pathways were identified as the critical signaling pathways mediating the therapeutic effects of the active bioactive ingredients on NAFLD. Treatment with CCT significantly reduced the activities of aspartate aminotransferase (AST), alanine transaminase (ALT), and the levels of total cholesterol (TC), triglyceride (TG), malondialdehyde (MDA), blood urea nitrogen (BUN), creatinine (CR), and uric acid (UA). CCT significantly increased the activities of superoxide dismutase (SOD), and catalase (CAT). Histological analysis showed that CCT suppressed high-fat diet (HFD) induced fat accumulation, steatohepatitis, and renal dysfunctions. Results of ELISA assay showed that CCT decreased the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and increased the expression of HO-1 and Nrf2.Conclusion: This study shows that CCT is a potential bioactive ingredient of saffron that treats NAFLD. Its mechanism of action involves suppressing of oxidative stress, mitigating inflammation, and upregulating Nrf2 and HO-1 expression.


Sign in / Sign up

Export Citation Format

Share Document