scholarly journals The Integrative Analysis of Thrombospondin Family Genes in Pan-Cancer Reveals that THBS2 Facilitates Gastrointestinal Cancer Metastasis

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Chunfeng Zhang ◽  
Chenyu Hu ◽  
Kunqi Su ◽  
Kun Wang ◽  
Xiaojuan Du ◽  
...  

Recent cancer studies have found that the thrombospondin (THBS) family, including THBS1, THBS2, THBS3, THBS4, and THBS5, play vital roles in the development and progression of human cancers. However, their relationships with tumor stage, prognosis, and tumor immunity in pan-cancer have not been systematically reported. In the present study, we employed versatile public databases to assess the expression and mutations of different THBSs in pan-cancer and performed functional experiments to analyze the roles of THBS2 in gastrointestinal cancer metastasis. Our findings indicate that THBS genes are frequently mutated in various cancers and the dysregulation of THBS family members is associated with the progression of some cancers such as gastric cancer, colon cancer, and lung cancer. Further analyses indicate that THBS genes are associated with cancer hallmarks such as cell cycle and epithelial-mesenchymal transition (EMT). Importantly, thrombospondins, especially THBS1 and THBS2, are correlated with the immune cell infiltration level in gastrointestinal cancers. Our experiments further verified that THBS2 participates in tumor metastasis by enhancing EMT. Therefore, the overall analyses reveal that THBSs might offer us potential chances for tumor diagnosis and therapy.

2019 ◽  
Vol 133 (5) ◽  
pp. 709-722 ◽  
Author(s):  
Chia-Chia Chao ◽  
Po-Chun Chen ◽  
Pei-Chen Chiou ◽  
Chin-Jung Hsu ◽  
Po-I Liu ◽  
...  

AbstractThe epithelial–mesenchymal transition (EMT) phenotype, whereby mature epithelial cells undergo phenotype transition and differentiate into motile, invasive cells, has been indicated in tumor metastasis. The melatonin hormone secreted by the pineal gland has an antioxidant effect and protects cells against carcinogenic substances that reduce tumor progression. However, the effects of melatonin in EMT and lung cancer metastasis are largely unknown. We found that melatonin down-regulated EMT by inhibiting Twist/Twist1 (twist family bHLH transcription factor 1) expression. This effect was mediated by MT1 receptor, PLC, p38/ERK and β-catenin signaling cascades. Twist expression was positively correlated with tumor stage and negatively correlated with MT1 expression in lung cancer specimens. Furthermore, melatonin inhibited EMT marker expression and lung cancer metastasis to liver in vivo. Finally, melatonin shows promise in the treatment of lung cancer metastasis and deserves further study.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3819
Author(s):  
Jung Woo Eun ◽  
Chul Won Seo ◽  
Geum Ok Baek ◽  
Moon Gyeong Yoon ◽  
Hye Ri Ahn ◽  
...  

Exosomal microRNAs (exo-miRs) contribute to cancer metastasis. To identify pro-metastatic circulating exo-miRs in hepatocellular carcinoma (HCC), next-generation sequencing-based plasma exo-miR profiles of 14 patients with HCC (eight non-metastatic and six with metastasis within 1 year of follow-up) were analyzed. Sixty-one miRs were significantly overexpressed among patients with metastatic HCC. Candidate miRs were selected through integrative analyses of two different public expression datasets, GSE67140 and The Cancer Genome Atlas liver hepatocellular carcinoma (TCGA_LIHC). Integrative analyses revealed 3 of 61 miRs (miR-106b-5p, miR-1307-5p, and miR-340-5p) commonly overexpressed both in metastasis and vascular invasion groups, with prognostic implications. Validation was performed using stored blood samples of 150 patients with HCC. Validation analysis showed that circulating exo-miR-1307-5p was significantly overexpressed in the metastasis group (p = 0.04), as well as in the vascular invasion and tumor recurrence groups. Circulating exo-miR-1307-5p expression was significantly correlated with tumor stage progression (p < 0.0001). Downstream signaling pathways of miR-1307 were predicted using TargetScan and Ingenuity Pathway Analysis. On comprehensive bioinformatics analysis, the downstream pathway of miR-1307-5p, promoting epithelial–mesenchymal transition (EMT), showed SEC14L2 and ENG downregulation. Our results show that circulating exo-miR-1307-5p promotes metastasis and helps predict metastasis in HCC, and SEC14L2 and ENG are target tumor suppressor genes of miR-1307 that promote EMT.


2020 ◽  
Vol 20 ◽  
Author(s):  
Qionghui Wu ◽  
Haidong Wei ◽  
Wenbo Meng ◽  
Xiaodong Xie ◽  
Zhenchang Zhang ◽  
...  

: Annexin, a calcium-dependent phospholipid binding protein, can affect tumor cell adhesion, proliferation, apoptosis, invasion and metastasis, as well as tumor neovascularization in different ways. Recent studies have shown that annexin exists not only as an intracellular protein in tumor cells, but also in different ways to be secret outside the cell as a “crosstalk” tool for tumor cells and tumor microenvironment, thus playing an important role in the development of tumors, such as participating in epithelial-mesenchymal transition, regulating immune cell behavior, promoting neovascularization and so on. The mechanism of annexin secretion in the form of extracellular vesicles and its specific role is still unclear. This paper summarizes the main role of annexin secreted into the extracellular space in the form of extracellular vesicles in tumorigenesis and drug resistance and analyzes its possible mechanism.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 558
Author(s):  
Jin Kyung Seok ◽  
Eun-Hee Hong ◽  
Gabsik Yang ◽  
Hye Eun Lee ◽  
Sin-Eun Kim ◽  
...  

Oxidized phospholipids are well known to play physiological and pathological roles in regulating cellular homeostasis and disease progression. However, their role in cancer metastasis has not been entirely understood. In this study, effects of oxidized phosphatidylcholines such as 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) on epithelial-mesenchymal transition (EMT) and autophagy were determined in cancer cells by immunoblotting and confocal analysis. Metastasis was analyzed by a scratch wound assay and a transwell migration/invasion assay. The concentrations of POVPC and 1-palmitoyl-2-glutaroyl-sn-glycero-phosphocholine (PGPC) in tumor tissues obtained from patients were measured by LC-MS/MS analysis. POVPC induced EMT, resulting in increase of migration and invasion of human hepatocellular carcinoma cells (HepG2) and human breast cancer cells (MCF7). POVPC induced autophagic flux through AMPK-mTOR pathway. Pharmacological inhibition or siRNA knockdown of autophagy decreased migration and invasion of POVPC-treated HepG2 and MCF7 cells. POVPC and PGPC levels were greatly increased at stage II of patient-derived intrahepatic cholangiocarcinoma tissues. PGPC levels were higher in malignant breast tumor tissues than in adjacent nontumor tissues. The results show that oxidized phosphatidylcholines increase metastatic potential of cancer cells by promoting EMT, mediated through autophagy. These suggest the positive regulatory role of oxidized phospholipids accumulated in tumor microenvironment in the regulation of tumorigenesis and metastasis.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 77-96
Author(s):  
T. Jeethy Ram ◽  
Asha Lekshmi ◽  
Thara Somanathan ◽  
K. Sujathan

Cancer metastasis and therapy resistance are the foremost hurdles in oncology at the moment. This review aims to pinpoint the functional aspects of a unique multifaceted glycosylated molecule in both intracellular and extracellular compartments of a cell namely galectin-3 along with its metastatic potential in different types of cancer. All materials reviewed here were collected through the search engines PubMed, Scopus, and Google scholar. Among the 15 galectins identified, the chimeric gal-3 plays an indispensable role in the differentiation, transformation, and multi-step process of tumor metastasis. It has been implicated in the molecular mechanisms that allow the cancer cells to survive in the intravascular milieu and promote tumor cell extravasation, ultimately leading to metastasis. Gal-3 has also been found to have a pivotal role in immune surveillance and pro-angiogenesis and several studies have pointed out the importance of gal-3 in establishing a resistant phenotype, particularly through the epithelial-mesenchymal transition process. Additionally, some recent findings suggest the use of gal-3 inhibitors in overcoming therapeutic resistance. All these reports suggest that the deregulation of these specific lectins at the cellular level could inhibit cancer progression and metastasis. A more systematic study of glycosylation in clinical samples along with the development of selective gal-3 antagonists inhibiting the activity of these molecules at the cellular level offers an innovative strategy for primary cancer prevention.


2021 ◽  
Vol 43 (2) ◽  
pp. 900-916
Author(s):  
Anna Zubrzycka ◽  
Monika Migdalska-Sęk ◽  
Sławomir Jędrzejczyk ◽  
Ewa Brzeziańska-Lasota

Endometriosis is a chronic gynecological disease defined by the presence of endometrial-like tissue found outside the uterus, most commonly in the peritoneal cavity. Endometriosis lesions are heterogenous but usually contain endometrial stromal cells and epithelial glands, immune cell infiltrates and are vascularized and innervated by nerves. The complex etiopathogenesis and heterogenity of the clinical symptoms, as well as the lack of a specific non-invasive diagnostic biomarkers, underline the need for more advanced diagnostic tools. Unfortunately, the contribution of environmental, hormonal and immunological factors in the disease etiology is insufficient, and the contribution of genetic/epigenetic factors is still fragmentary. Therefore, there is a need for more focused study on the molecular mechanisms of endometriosis and non-invasive diagnostic monitoring systems. MicroRNAs (miRNAs) demonstrate high stability and tissue specificity and play a significant role in modulating a range of molecular pathways, and hence may be suitable diagnostic biomarkers for the origin and development of endometriosis. Of these, the most frequently studied are those related to endometriosis, including those involved in epithelial–mesenchymal transition (EMT), whose expression is altered in plasma or endometriotic lesion biopsies; however, the results are ambiguous. Specific miRNAs expressed in endometriosis may serve as diagnostics markers with prognostic value, and they have been proposed as molecular targets for treatment. The aim of this review is to present selected miRNAs associated with EMT known to have experimentally confirmed significance, and discuss their utility as biomarkers in endometriosis.


2019 ◽  
Vol 5 (4) ◽  
pp. 53 ◽  
Author(s):  
Xiao ◽  
Humphries ◽  
Yang ◽  
Wang

MicroRNAs (miRNAs) are endogenous non-coding small RNAs that downregulate target gene expression by imperfect base-pairing with the 3′ untranslated regions (3′UTRs) of target gene mRNAs. MiRNAs play important roles in regulating cancer cell proliferation, stemness maintenance, tumorigenesis, cancer metastasis, and cancer therapeutic resistance. While studies have shown that dysregulation of miRNA-205-5p (miR-205) expression is controversial in different types of human cancers, it is generally observed that miR-205-5p expression level is downregulated in breast cancer and that miR-205-5p exhibits a tumor suppressive function in breast cancer. This review focuses on the role of miR-205-5p dysregulation in different subtypes of breast cancer, with discussions on the effects of miR-205-5p on breast cancer cell proliferation, epithelial–mesenchymal transition (EMT), metastasis, stemness and therapy-resistance, as well as genetic and epigenetic mechanisms that regulate miR-205-5p expression in breast cancer. In addition, the potential diagnostic and therapeutic value of miR-205-5p in breast cancer is also discussed. A comprehensive list of validated miR-205-5p direct targets is presented. It is concluded that miR-205-5p is an important tumor suppressive miRNA capable of inhibiting the growth and metastasis of human breast cancer, especially triple negative breast cancer. MiR-205-5p might be both a potential diagnostic biomarker and a therapeutic target for metastatic breast cancer.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Tetsu Hayashida ◽  
Hiromitsu Jinno ◽  
Yuko Kitagawa ◽  
Masaki Kitajima

Epithelial-mesenchymal transition (EMT) is a multistep process in which cells acquire molecular alterations such as loss of cell-cell junctions and restructuring of the cytoskeleton. There is an increasing understanding that this process may promote breast cancer progression through promotion of invasive and metastatic tumor growth. Recent observations imply that there may be a cross-talk between EMT and cancer stem cell properties, leading to enhanced tumorigenicity and the capacity to generate heterogeneous tumor cell populations. Here, we review the experimental and clinical evidence for the involvement of EMT in cancer stem cell theory, focusing on the common characteristics of this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document