scholarly journals The Ameliorative Effects of Arctiin and Arctigenin on the Oxidative Injury of Lung Induced by Silica via TLR-4/NLRP3/TGF-β Signaling Pathway

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Xueying Liu ◽  
Jian Wang ◽  
Peiyuan Dou ◽  
Xu Zhang ◽  
Xiaoku Ran ◽  
...  

Silicosis remains one of the most serious diseases worldwide, with no effective drug for its treatment. Our research results have indicated that arctiin and arctigenin could increase the mitochondrial membrane potential, which in turn reduces the production of reactive oxygen species (ROS), blocks the polarization of macrophages, and inhibits the differentiation of myofibroblasts to reduce oxidative stress, inflammation, and fibrosis. Further, our study revealed that arctiin and arctigenin suppressed the activation of NLRP3 inflammasome through the TLR-4/Myd88/NF-κB pathway and the silica-induced secretion of TNF-α, IL-1β, TGF-β, and α-SMA. Besides, the silica-induced increase in the levels of serum ceruloplasmin and HYP was also inhibited. Results of metabolomics indicated that arctiin and arctigenin could regulate the abnormal metabolic pathways associated with the development of silicosis, which involve pantothenate and CoA biosynthesis, cysteine and methionine metabolism, linoleic acid metabolism, and arginine and proline metabolism successively. Furthermore, the analysis of metabolomics, together with network topological analysis in different phases of silicosis, revealed that urine myristic acid, serum 4-hydroxyproline, and L-arginine could be regarded as diagnosis biomarkers in the early phase and formation of pulmonary fibrosis in the latter phases of silicosis. Arctiin and arctigenin could downregulate the increased levels of myristic acid in the early phase and serum 4-hydroxyproline in the latter phase of silicosis. Interestingly, the integration of TLR-4/NLRP3/TGF-β signaling and metabolomics verified the importance of macrophage polarization in the silicosis fibrosis process. To the best of our knowledge, this is the first study reporting that arctiin and arctigenin both can ameliorate silicosis effectively, and the former is a little stronger than its aglycone arctigenin because of its high oral bioavailability, low toxicity, and multimolecular active metabolites as determined by AdmetSAR and molecular docking analysis.

Author(s):  
Yuting Tang ◽  
Xiaofang Lin ◽  
Cheng Chen ◽  
Zhongyi Tong ◽  
Hui Sun ◽  
...  

Background: Nucleolin has multiple functions within cell survival and proliferation pathways. Our previous studies have revealed that nucleolin can significantly reduce myocardial ischemia-reperfusion injury by promoting myocardial angiogenesis and reducing myocardial apoptosis. In this study, we attempted to determine the role of nucleolin in myocardial infarction (MI) injury recovery and the underlying mechanism. Methods: Male BALB/c mice aged 6–8 weeks were used to set up MI models by ligating the left anterior descending coronary artery. Nucleolin expression in the heart was downregulated by intramyocardial injection of a lentiviral vector expressing nucleolin-specific small interfering RNA. Macrophage infiltration and polarization were measured by real-time polymerase chain reaction, flow cytometry, and immunofluorescence. Cytokines were detected by enzyme-linked immunosorbent assay. Results: Nucleolin expression in myocardium after MI induction decreased a lot at early phase and elevated at late phase. Nucleolin knockdown impaired heart systolic and diastolic functions and decreased the survival rate after MI. Macrophage infiltration increased in the myocardium after MI. Most macrophages belonged to the M1 phenotype at early phase (2 days) and the M2 phenotype increased greatly at late phase after MI. Nucleolin knockdown in the myocardium led to a decrease in M2 macrophage polarization with no effect on macrophage infiltration after MI. Furthermore, Notch3 and STAT6, key regulators of M2 macrophage polarization, were upregulated by nucleolin in RAW 264.7 macrophages. Conclusions: Lack of nucleolin impaired heart function during recovery after MI by reducing M2 macrophage polarization. This finding probably points to a new therapeutic option for ischemic heart disease.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Keizo Kohno ◽  
Satomi Koya-Miyata ◽  
Akira Harashima ◽  
Takahiko Tsukuda ◽  
Masataka Katakami ◽  
...  

Abstract Background NK-4 has been used to promote wound healing since the early-1950s; however, the mechanism of action of NK-4 is unknown. In this study, we examined whether NK-4 exerts a regulatory effect on macrophages, which play multiple roles during wound healing from the initial inflammatory phase until the tissue regeneration phase. Results NK-4 treatment of THP-1 macrophages induced morphological features characteristic of classically-activated M1 macrophages, an inflammatory cytokine profile, and increased expression of the M1 macrophage-associated molecules CD38 and CD86. Interestingly, NK-4 augmented TNF-α production by THP-1 macrophages in combination with LPS, Pam3CSK4, or poly(I:C). Furthermore, NK-4 treatment enhanced THP-1 macrophage phagocytosis of latex beads. These results indicate that NK-4 drives macrophage polarization toward an inflammatory M1-like phenotype with increased phagocytic activity. Efferocytosis is a crucial event for resolution of the inflammatory phase in wound healing. NK-4-treated THP-1 macrophages co-cultured with apoptotic Jurkat E6.1 (Apo-J) cells switched from an M1-like phenotype to an M2-like phenotype, as seen in the inverted ratio of TNF-α to IL-10 produced in response to LPS. We identified two separate mechanisms that are involved in this phenotypic switch. First, recognition of phosphatidylserine molecules on Apo-J cells by THP-1 macrophages downregulates TNF-α production. Second, phagocytosis of Apo-J cells by THP-1 macrophages and activation of PI3K/Akt signaling pathway upregulates IL-10 production. Conclusion It is postulated that the phenotypic switch from a proinflammatory M1-like phenotype to an anti-inflammatory M2-like phenotype is dysregulated due to impaired efferocytosis of apoptotic neutrophils at the wound site. Our results demonstrate that NK-4 improves phagocytosis of apoptotic cells, suggesting its potential as a therapeutic strategy to resolve sustained inflammation in chronic wounds.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 394.1-394
Author(s):  
A. Hukara ◽  
M. Rudnik ◽  
C. B. Rufer ◽  
O. Distler ◽  
P. Blyszczuk ◽  
...  

Background:Fos-like 2 (Fosl-2) is a transcription factor of the AP-1 family and has a broad range in inducing cellular changes affecting fibrosis and inflammatory responses. Pathological effects of Fosl-2 have been associated with systemic sclerosis (SSc). In addition, increased expression of Fosl-2 has been detected in human SSc monocyte-derived macrophages [1]. Monocytes and macrophages play a central role in activating and propagating acute inflammation followed by pathological fibrosis and organ dysfunction. The classification of the macrophage polarization phenotype can be assigned based on the stimulus, for example into classically-activated M(LPS), and alternatively-activated M(IL-4) macrophages [2]. However, the role of the Fosl-2 transcription factor in macrophage polarization remains elusive.Objectives:To investigate the role of Fosl-2 in macrophage polarization in SSc using Fosl-2 overexpressing transgenic (Fosl-2 tg) mice and human blood-derived macrophages from SSc patients.Methods:Thiogylcolate-elicited peritoneal macrophages were isolated from wild-type (wt) and Fosl-2 tg mice. Human peripheral CD14+ blood-derived monocytes were isolated and differentiated to macrophages (hMDM) from healthy controls and SSc patients. Murine and human macrophages were polarized with LPS (10 ng/ml), LPS + recombinant mouse IFN-γ (10 ng/ml), recombinant mouse, resp. human IL-4 (10 ng/ml) or remained untreated. Macrophage surface marker expression was assessed by flow cytometry using a mouse (F4/80, CD11b, CD86, CD80, CD38, MHCII, CD206, PD-L1, PD-L2, CD36) or human (CD38, CD40, CD86, PD-L2, PD-L1, CD163, CD206) designed polarization panel. Phagocytic activity was detected with pHrodo Red E.coli particles by flow cytometry. Gene expression and secretion of pro- and anti-inflammatory markers were measured by RT-qPCR, standard ELISAs and Griess Assay for nitric oxide production.Results:After LPS stimulation, mRNA levels of IL-1β (p<0.01, n=11-12), TNF-α (p=0.05, n=11-12) and IFN-γ (p<0.05, n=7) were reduced, whereas expression of IL-10 (p<0.05, n=11-12) was enhanced in Fosl-2 tg peritoneal macrophages in comparison to wt cells. Secretion of TNF-α (p<0.01, n=9-11) and nitric oxide (p<0.01, n=9) was impaired in Fosl-2 tg peritoneal macrophages compared to wt cells after LPS stimulation. Peritoneal macrophages were analyzed directly after isolation for macrophage polarization cell surface marker expression. Fosl-2 tg peritoneal macrophages showed an increase in the F4/80+CD11b+PD-L2+CD36+ cell population (p<0.01, n=3-6) compared to peritoneal macrophages from wt mice.The expression of cell surface markers of non-polarized and IL-4 stimulated SSc hMDM (n=17) showed an increased percentage of CD40+CD86+CD206+PD-L2+CD163+ cells (p<0.05) compared to healthy control hMDM (n=7). Phagocytic activity was enhanced in SSc hMDM (n=7) compared to healthy untreated (p<0.05), LPS (p=0.05) and IL-4 (p<0.05) hMDM (n=5).Conclusion:Our animal data indicates a role of Fosl-2 in regulating macrophage polarization with a shift from a classically-activated to an alternatively-activated phenotype. Similarly, SSc hMDM resemble a functional M(IL-4) alternative macrophage phenotype.Thus, maintaining a balanced proportion of classically- and alternatively-activated macrophage phenotypes may be an effective tool to control macrophage function in SSc.References:[1]Moreno-Moral, A., et al., Changes in macrophage transcriptome associate with systemic sclerosis and mediate GSDMA contribution to disease risk. Ann Rheum Dis, 2018. 77(4): p. 596-601.[2]Kania, G., M. Rudnik, and O. Distler, Involvement of the myeloid cell compartment in fibrogenesis and systemic sclerosis. Nat Rev Rheumatol, 2019. 15(5): p. 288-302.Disclosure of Interests:Amela Hukara: None declared, Michal Rudnik: None declared, Chantal Brigitta Rufer: None declared, Oliver Distler Speakers bureau: Actelion, Bayer, Boehringer Ingelheim, Medscape, Novartis, Roche, Menarini, Mepha, MSD, iQone, Pfizer, Consultant of: Abbvie, Actelion, Acceleron Pharma, Amgen, AnaMar, Arxx Therapeutics, Bayer, Baecon Discovery, Blade Therapeutics, Boehringer, CSL Behring, ChemomAb, Corpuspharma, Curzion Pharmaceuticals, Ergonex, Galapagos NV, GSK, Glenmark Pharmaceuticals, Inventiva, Italfarmaco, iQvia, Kymera, Medac, Medscape, Mitsubishi Tanabe Pharma, MSD, Roche, Sanofi, UCB, Lilly, Target BioScience, Pfizer, Grant/research support from: Actelion, Bayer, Boehringer Ingelheim, Kymera Therapeutics, Mitsubishi Tanabe, Przemyslaw Blyszczuk: None declared, Gabriela Kania: None declared


2021 ◽  
Vol 19 ◽  
pp. 205873922110008
Author(s):  
Se Hyang Hong ◽  
Jin Mo Ku ◽  
Ye Seul Lim ◽  
Hyo In Kim ◽  
Yong Cheol Shin ◽  
...  

The objective of this study was to investigate the effects of Cervus nippon var. mantchuricus water extract treated with digestive enzymes (CE) on the promotion of M1 macrophage polarization in murine macrophages. Macrophages polarize either to one phenotype after stimulation with LPS or IFN-γ or to an alternatively activated phenotype that is induced by IL-4 or IL-13. Cell viability of RAW264.7 cells was determined by WST-1 assay. NO production was measured by Griess assay. IL-6, IL-12, TNF-α, and iNOS mRNA levels were measured by RT-PCR. IL-6, IL-12, and IL-10 cytokine levels were determined by ELISA. TLR4/MAPK/NF-κB signaling in RAW264.7 cells was evaluated by western blotting. The level of NF-κB was determined by immunoblotting. CE induced the differentiation of M1 macrophages. CE promoted M1 macrophages to elevate NO production and cytokine levels. CE-stimulated M1 macrophages had enhanced IL-6, IL-12, and TNF-α. CE promoted M1 macrophages to activate TLR4/MAPK/NF-κB phosphorylation. M2 markers were downregulated, while M1 markers were upregulated in murine macrophages by CE. Consequently, CE has immunomodulatory activity and can be used to promote M1 macrophage polarization through the TLR4/MAPK/NF-κB signaling pathways.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1098
Author(s):  
Tania Carta ◽  
Elisabetta Razzuoli ◽  
Floriana Fruscione ◽  
Susanna Zinellu ◽  
Dionigia Meloni ◽  
...  

Macrophages are phagocytic cells involved in maintaining tissue homeostasis and defense against pathogens. Macrophages may be polarized into different functionally specialized subsets. M2c macrophages arise following stimulation with IL-10 or TGF-β and mediate anti-inflammatory and tissue repair functions. M2c macrophages remain poorly characterized in the pig, thus we investigated the impact of these regulatory cytokines on porcine monocyte-derived macrophages (moMΦ). The phenotype and functionality of these cells was characterized though confocal microscopy, flow cytometry, ELISA, and RT-qPCR. Both cytokines induced CD14 and MHC II DR down-regulation and reduced IL-6, TNF-α, and CD14 expression, suggestive of an anti-inflammatory phenotype. Interestingly, neither IL-10 or TGF-β were able to trigger IL-10 induction or release by moMΦ. Differences between these cytokines were observed: stimulation with IL-10, but not TGF-β, induced up-regulation of both CD16 and CD163 on moMΦ. In addition, IL-10 down-regulated expression of IL-1β and IL-12p40 4h post-stimulation and induced a stronger impairment of moMΦ ability to respond to either TLR2 or TLR4 agonists. Overall, our results provide an overview of porcine macrophage polarization by two immunosuppressive cytokines, revealing differences between IL-10 and TGF-β, and reporting some peculiarity of swine, which should be considered in translational studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
De Jin ◽  
Xuedong An ◽  
Yuqing Zhang ◽  
Shenghui Zhao ◽  
Liyun Duan ◽  
...  

Background: Coronavirus Disease 2019 (COVID-19) is still a relevant global problem. Although some patients have recovered from COVID-19, the sequalae to the SARS-CoV-2 infection may include pulmonary fibrosis, which may contribute to considerable economic burden and health-care challenges. Convalescent Chinese Prescription (CCP) has been widely used during the COVID-19 recovery period for patients who were at high risk of pulmonary fibrosis and is recommended by the Diagnosis and Treatment Protocol for COVID-19 (Trial Version sixth, seventh). However, its underlying mechanism is still unclear.Methods: In this study, an integrated pharmacology approach was implemented, which involved evaluation of absorption, distribution, metabolism and excretion of CCP, data mining of the disease targets, protein-protein interaction (PPI) network construction, and analysis, enrichment analysis, and molecular docking simulation, to predict the bioactive components, potential targets, and molecular mechanism of CCP for pulmonary fibrosis associated with SARS-CoV-2 infection.Results: The active compound of CCP and the candidate targets, including pulmonary fibrosis targets, were obtained through database mining. The Drug-Disease network was constructed. Sixty-five key targets were identified by topological analysis. The findings of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation suggested that the VEGF, Toll-like 4 receptor, MAPK signaling pathway, and TGF-β1 signaling pathways may be involved in pulmonary fibrosis. In the molecular docking analyses, VEGF, TNF-α, IL-6, MMP9 exhibited good binding activity. Findings from our study indicated that CCP could inhibit the expression of VEGF, TNF-α, IL-6, MMP9, TGF-β1 via the VEGF, Toll-like 4 receptor, MAPK, and TGF-β1 signaling pathways.Conclusion: Potential mechanisms involved in CCP treatment for COVID-19 pulmonary fibrosis associated with SARS-CoV-2 infection involves multiple components and multiple target points as well as multiple pathways. These findings may offer a profile for further investigations of the anti-fibrotic mechanism of CCP.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Hector A Cabrera-Fuentes ◽  
Klaus T Preissner ◽  
William A Boisvert

As an important component of atherosclerosis, monocytes/macrophages respond to external stimuli with rapid changes in their expression of many inflammation-related genes to undergo polarization towards the M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotype. Although sialoadhesin (Sn), also known as SIGLEC-1 or CD169, is a transmembrane protein receptor expressed on monocytes and macrophages whether it has a role in macrophage polarization and ultimately, macrophage-driven atherogenesis, has not been investigated. We have previously shown that, independently of Toll-like receptor signaling, extracellular RNA (eRNA) could exert pro-thrombotic and pro-inflammatory properties in the cardiovascular system by inducing cytokine mobilization. In the current study, recombinant mouse macrophage CSF[[Unable to Display Character: &#8211;]]driven bone marrow-derived macrophage (BMDM) differentiation was found to be skewed towards the M1 phenotype by exposure of cells to eRNA. This resulted in up-regulation of inflammatory markers, whereas anti-inflammatory genes were significantly down-regulated by eRNA. Interestingly, eRNA was released from BMDM under hypoxia and induced TNF-α liberation by activating TNF-α converting enzyme (TACE) to provoke inflammation. Conversely, TNF-α promoted eRNA release, especially under hypoxia, feeding a vicious cycle of cell damage. Administration of RNase1 or TAPI (a TACE-inhibitor) prevented the production of inflammatory mediators. Murine BMDM isolated from mice deficient in sialoadhesin had the opposite reaction to eRNA treatment with a prominent down-regulation of pro-inflammatory cytokines/M1 phenotype markers, while anti-inflammatory cytokines/M2 phenotype markers were significantly raised. In keeping with the proposed role of eRNA as a pro-inflammatory “alarm signal”, these data further shed light on the role of eRNA in macrophage function in the context of chronic inflammatory diseases such as atherosclerosis. The identification of sialoadhesin as putative eRNA recognition site on macrophages may allow further investigation of the underlying mechanisms of eRNA-macrophage interaction and related signal transduction pathways. Siglec-1 thereby may provides a new target to treat eRNA-mediated vascular diseases.


Nephron ◽  
2001 ◽  
Vol 87 (2) ◽  
pp. 155-160 ◽  
Author(s):  
S. Benchetrit ◽  
E. Golan ◽  
E. Podjarny ◽  
J. Green ◽  
G. Rashid ◽  
...  

2009 ◽  
Vol 296 (6) ◽  
pp. G1332-G1343 ◽  
Author(s):  
Annabelle Cesaro ◽  
Abakar Abakar-Mahamat ◽  
Patrick Brest ◽  
Sandra Lassalle ◽  
Eric Selva ◽  
...  

The acute phase of Crohn's disease (CD) is characterized by a large afflux of polymorphonuclear leukocytes (PMNL) into the mucosa and by the release of TNF-α. Conversion of inactive TNF-α into an active form requires the cleavage of a transmembrane TNF-α precursor by the TNF-α-converting enzyme (ADAM17), a protease mainly regulated by the tissue inhibitor of metalloproteinase 3 (TIMP3). The aim of the present study was to investigate in an in vitro model of PMNL transepithelial migration and in the intestinal mucosa of patients with CD the expression and regulation of ADAM17 and TIMP3 in intestinal epithelial cells (IEC). ADAM17 and TIMP3 expression was analyzed by Western blotting, RT-PCR, confocal microscopy, and immunohistochemistry by using the T84 model and digestive biopsies. ADAM17 expression in IEC was increased at a posttranscriptional level during the early phase (from 2 to 4 h) of PMNL transepithelial migration whereas TIMP3 was only increased 24 h later. TNF-α induced an early upregulation of ADAM17 in T84 cells, whereas PMNL adhesion, H2O2, or epithelial tight junction opening alone did not affect the amount of ADAM17. Immunohistochemistry of intestinal biopsies revealed that strong expression of ADAM17 was associated with a high activity of CD. In contrast, TIMP3 was very poorly expressed in these biopsies. ADAM17 and TIMP3 profiling did not correlated with the NOD2/CARD15 status. The ADAM17 activity was higher both in the early phase of PMNL transepithelial migration and in active CD. These results showed early posttranscriptional upregulation of ADAM17 in IEC linked to PMNL transepithelial migration and a high activity of CD.


Sign in / Sign up

Export Citation Format

Share Document