scholarly journals Effects of Thermal Treatment on Mineral Composition and Pore Structure of Coal

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bin Liu ◽  
Teng Teng ◽  
Zhenhua Jiao ◽  
Shaobo Li

With the increasing depth of coalbed methane (CBM) exploitation, temperature becomes the main factor affecting the efficiency of CBM exploitation. The change of temperature has significant influence on the mineral composition and pore structure of coal. To study the effects of thermal treatment on mineral composition and pore structure of coal, X-ray diffraction (XRD) test, scanning electron microscopy (SEM) test, and mercury intrusion test were carried out for three groups of coal. The mineral composition and pore structure of coal specimens after thermal treatment (25, 50, 75, and 100°C) were analyzed. The results show that the main mineral compositions of three groups of coal specimens after different temperatures are basically unchanged, and the maximum diffracted intensity after different temperature treatments decreases first and then increases with the increasing temperature. The count of fissures decreases first and then increases with temperature, and the count of pores increases first and then decreases with the increasing temperature. The velocity of mercury injection in high pressure (100~400 MPa) of coal specimens increases first and then decreases with temperature. The porosity, pore area, median pore diameter, and average pore diameter increase with the increasing temperatures. The volume of microfracture decreases, then increases, and finally decreases. The volume of macropore and mesopore increases slowly, and that of transition pore decreases slowly with the increasing temperature. Meanwhile, the volume of micropore increases first and then decreases during the process of thermal treatment. The fractal dimension of pore size ranges from 2.6 to 2.9 and increases linearly with the increasing temperature.

2016 ◽  
Vol 881 ◽  
pp. 35-40
Author(s):  
Franciele Oliveira Costa ◽  
Carla Gabriela Azevedo Misael ◽  
André Miranda da Silva ◽  
Bianca Viana de Sousa

The mesoporous silica SBA-15 molecular sieve has been widely studied due to its unidirectional mesoporous structure, its high average pore diameter, its high thermal and hydrothermal stability and its ability to absorb metal ions, allowing its use as support material for catalysts. This study aimed to synthesize the Co/SBA-15 catalyst, and characterize it through the techniques of X-ray diffraction, temperature programmed reduction (TPR) and scanning electron microscopy (SEM). The SBA-15 support was synthesized from the following molar composition of reaction mixture: 1TEOS: 0.017 P123: 5.7 HCl: 173 H2O: 40 EtOH, and after calcined at 550 °C for 6 hours. The Co/SBA-15 catalyst was prepared by incorporating 10% cobalt by wet impregnation. Through the X-ray diffractograms, it was found that the impregnation has not changed the structure of the material. RTP profiles showed the presence of peaks at different temperatures that may be caused by dispersion of the cobalt.


2020 ◽  
Vol 12 (9) ◽  
pp. 3927 ◽  
Author(s):  
Yugang Cheng ◽  
Mengru Zeng ◽  
Zhaohui Lu ◽  
Xidong Du ◽  
Hong Yin ◽  
...  

Research on the physicochemical reactions between supercritical carbon dioxide (Sc-CO2) and shale at different temperature is essential for geological CO2 sequestration. In this paper, shale from the Longmaxi formation in Sichuan basin of China was collected to study the changes in mineral composition, pore structure, and organic functional groups treated with Sc-CO2 at fixed pressure 8 MPa and temperatures 40 °C to 80 °C. Samples were analyzed with x-ray diffraction, CO2/N2 gas adsorption, and Fourier transform infrared spectroscopy. The results show that the dissolution of clay minerals by Sc-CO2 first declined, but then increased when the temperature increased; dissolution reached a minimum at 60 °C. The specific surface area, total pore volume, predominant pore type (mesopores), and fractal dimension of the shale pore structure first increases and then decreases with increasing temperature. The destruction of hydroxyl structures by Sc-CO2 is related to the destruction of OH–N and ring hydroxyls. As the temperature increases, the hydroxyl destruction first increases and then decreases. The aromatic hydrocarbons are mainly dominated by 3H and 2H, and their abundances increase significantly as temperature increases, whereas the 4H shows a decreasing trend; the 1H abundance does not change appreciably. The relative abundances of aromatic and aliphatic hydrocarbons decrease linearly as the temperature increases. These research results provide theoretical support for the geological storage of Sc-CO2 in shale at different temperatures.


2020 ◽  
Vol 3 (4) ◽  
pp. 213-221
Author(s):  
Vareska Lucero Zarate-Córdova ◽  
Mercedes Teresita Oropeza-Guzmán ◽  
Eduardo Alberto López-Maldonado ◽  
Ana Leticia Iglesias ◽  
Theodore Ng ◽  
...  

The search for a suitable bone replacement is of great importance due to the difficulty to use autologous transplants. Hence, the objective of this work is to compare the temperature effect on the porosity and average pore diameter of hydroxyapatite porous scaffolds fabricated by the salt leaching method.  Hydroxyapatite porous scaffolds fabricated by the salt leaching technique were sintered from ~150 to 1000 °C. Synthesized hydroxyapatite was assessed by X-ray diffraction (XRD). Zeta potential at different temperatures was evaluated. Specimens were characterized using scanning electron microscopy (SEM) and Raman analysis. The results showed that significant porosity (57%) and pore size (49 µm) occurred with a thermal treatment above ~ 850 °C for scaffolds that were pre-sintered at 1050 °C.


2004 ◽  
Vol 19 (9) ◽  
pp. 2687-2693 ◽  
Author(s):  
Lay Gaik Teoh ◽  
Jiann Shieh ◽  
Wei Hao Lai ◽  
Min Hsiung Hon

The effects of mesoporous structure on grain growth were investigated in this study. The synthesis was accomplished using block copolymer as the organic template and tungsten chloride as the inorganic precursor. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy, x-ray diffractometry (XRD), transmission electron microscopy, and N2 adsorption/desorption isotherms were used to characterize the microstructures obtained for different temperatures. TGA and XRD analyses demonstrate that copolymers were expelled at 150–250 °C, and mesoporous structure was stable up to 350 °C. The pore diameter and the surface area evaluated from the Barrett-Joyner-Halenda model and Brunauer–Emmett–Teller method indicated that the average pore diameter is 4.11 nm and specific surface area is 191.5 m2/g for 250 °C calcination. Arrhenius equation used to calculate the activation energy for grain growth demonstrates that the activation energy for grain growth was about 38.1 kJ/mol before mesostructure collapse and 11.3 kJ/mol after collapse. These results show evidence of two different mechanisms governing the process of grain growth. The presence of the pore can be related to the obstacle for grain growth.


2021 ◽  
Vol 21 (1) ◽  
pp. 682-692
Author(s):  
Youzhi Wang ◽  
Cui Mao

The pore structure characteristic is an important index to measure and evaluate the storage capacity and fracturing coal reservoir. The coal of Baliancheng coalfield in Hunchun Basin was selected for experiments including low temperature nitrogen adsorption method, Argon Ion milling Scanning Electron Microscopy (Ar-SEM), Nuclear Magnetic Resonance (NMR), X-ray diffraction method, quantitative mineral clay analysis method. The pore structure of coal was quantitatively characterized by means of fractal theory. Meanwhile, the influences of pores fractal dimension were discussed with experiment data. The results show that the organic pores in Baliancheng coalfield are mainly plant tissue pores, interparticle pores and gas pores, and the mineral pores are corrosion pores and clay mineral pores. There are mainly slit pore and wedge-shaped pore in curve I of Low temperature nitrogen adsorption. There are ink pores in curve II with characteristics of a large specific surface area and average pore diameter. The two peaks of NMR T2 spectrum indicate that the adsorption pores are relatively developed and their connectivity is poor. The three peaks show the seepage pores and cracks well developed, which are beneficial to improve the porosity and permeability of coal reservoir. When the pore diameter is 2–100 nm, the fractal dimensions D1 and D2 obtained by nitrogen adsorption experiment. there are positive correlations between water content and specific surface area and surface fractal dimension D1, The fractal dimension D2 was positively and negatively correlated with ash content and average pore diameters respectively. The fractal dimensions DN1 and DN2 were obtained by using the NMR in the range of 0.1 μm˜10 μm. DN1 are positively correlated with specific surface area of adsorption pores. DN2 are positively correlated volume of seepage pores. The fractal dimension DM and dissolution hole fractal dimension Dc were calculated by SEM image method, respectively controlled by clay mineral and feldspar content. There is a remarkable positive correlation between D1 and DN1 and Langmuir volume of coal, so fractal dimension can effectively quantify the adsorption capacity of coal.


2013 ◽  
Vol 743-744 ◽  
pp. 434-437
Author(s):  
Miao Lv ◽  
Guo Tong Qin ◽  
Wei Wei

TiO2aerogel fibers have been fabricated by electron span combined supercritical drying technique. Polyvinylpyrrolidone (PVP)/TiO2composite fibers are prepared by electrospinning PVP and TiO2precursor Ti (OC4H9)4. TiO2aerogel fibers are obtained by supercritical drying PVP/TiO2composite fibers using ethanol as media. Structural of the aerogel fibers was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and N2adsorption at 77 K. The effect of mass ratio of PVP/TiO2was investigated. SEM shows that pore structure of nanofibers was well developed, with the diameter of nanofibers about 2 μm. N2adsorption/desorption data show that the highest surface area of aerogel fibers reached 241.6 m2/g with the average pore diameter about 10 nm. The aerogel fibers were anatase type TiO2.


2019 ◽  
Vol 28 (52) ◽  
pp. 43-58
Author(s):  
María Angélica Colpas-Ruiz ◽  
Camilo Gnecco-Molina ◽  
Gabriel Antonio Jiménez-Rodríguez ◽  
José Andrés Pérez-Mendoza ◽  
Óscar Fabián Higuera-Cobos

This work reports the obtaining of an anticorrosive pigment composed mainly of hematite (ɑ-Fe2O3) from a powder steel industry waste from rust scale of rebar steel. This residue is mainly composed of Fe2O3 (87.97 %), SiO2 (6.13 %), CaO (1.88 %), Al2O3 (1.30%) and MnO (0.77 %). The total iron oxide of the residue is constituted by the following crystalline phases: magnetite, maghemita, lepidocrocita, wüstite, goethite and hematite. The production of a pigment with a high content of hematite was possible thanks to the high content of precursor iron oxides, which were calcined at different temperatures (750-850 °C) and holding times (0.5-1.50 h). For characterizing the iron content chemically and to identify their iron oxides phases, it was used X-ray fluorescence (XRF) and X-ray diffraction (XRD). The results showed that the pigment with the highest amount of hematite (ɑ-Fe2O3) was obtained at a calcination temperature of 850 °C and a holding time of 1.00 h.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1129
Author(s):  
Luyara de Almeida Cavalcante ◽  
Laís Sibaldo Ribeiro ◽  
Mitsuo Lopes Takeno ◽  
Pedro Tupa Pandava Aum ◽  
Yanne Katiussy Pereira Gurgel Aum ◽  
...  

The present work demonstrates the production of chlorapatite (ClAp) through thermal decomposition of chemically treated fish scales, originating from an Amazon fish species (Arapaima gigas). The scales were treated with hydrochloric acid (HCl) solution for deproteinization. Afterwards, the solution was neutralized by sodium hydroxide (NaOH) treatment to obtain an apatite-rich slurry. The heat treatment was carried out at different temperatures including 600 °C, 800 °C, and 1000 °C. The powders obtained were characterized through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). The XRD analysis and FTIR spectra confirmed the incorporation of chlorine into the apatite structure. The FTIR results showed absorption bands relative to the OH–, PO43− functional groups which are a characteristic of chlorapatite. Moreover, the intensity of the OH–Cl elongation could be observed. Chlorapatite Ca5(PO4)3Cl, NaCl, and NaCaPO4 phases were identified, achieving up to 87.4 wt% for ClAp. The SEM observations show that with increasing temperature, the ClAp obtained consists of slightly larger, more crystalline grains. Furthermore, the grains ranged in size, between 1-5 μm and ClAp1000 sample recorded crystallinity of 84.27%. ClAp and NaCaPO4 can be used in electronics as phosphor materials due to their luminescence and biomedical applications.


Cerâmica ◽  
2019 ◽  
Vol 65 (374) ◽  
pp. 190-193
Author(s):  
M. F. Mota ◽  
A. M. C. Santos ◽  
R. M. C. Farias ◽  
G. A. Neves ◽  
R. R. Menezes

Abstract This work shows the successful production of alumina nanofibers after thermal treatment of solution blow spun hybrid fibers. These nanofibers were converted into γ-Al2O3 and α-Al2O3 after the thermal treatment in air between 500 to 1200 °C. The X-ray diffraction patterns presented all the characteristics of the γ and α phases of alumina. In addition, the scanning electron micrographs showed alumina nanofiber diameters varying between 200 and 270 nm for different temperatures. The results demonstrated that the solution blowing spinning method is efficient to produce alumina nanofibers.


1996 ◽  
Vol 11 (2) ◽  
pp. 518-528 ◽  
Author(s):  
V. Vendange ◽  
Ph. Colomban

Optically clear monolithic (OCM) gels of mesoporous aluminosilicates (average pore diameter 3.6 nm) and alumina (6 nm) have been prepared by slow hydrolysis-polycondensation of alkoxides and converted into OCM mesoporous glasses by heating. In order to change the properties, different ways of modifying the pore size and structure are proposed. We show that addition of boron oxide reduces the average pore diameter. A higher effect can be obtained by addition of a surfactant. In this case the mesoporous matrix becomes microporous (d < 2 nm). Another way of modifying the pore structure consists of introducing nanoprecipitates inside the porosity by an impregnation process. Modifications of the porous structure are different in alumina and aluminosilicates.


Sign in / Sign up

Export Citation Format

Share Document