scholarly journals Phytochemical Constituents, Biological Activities, and Health-Promoting Effects of the Melissa officinalis

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Javad Sharifi-Rad ◽  
Cristina Quispe ◽  
Jesús Herrera-Bravo ◽  
Muhammad Akram ◽  
Wafa Abbaass ◽  
...  

Medicinal plants are being used worldwide for centuries for their beneficial properties. Some of the most popular medicinal plants belong to the Melissa genus, and different health beneficial effects have already been identified for this genus. Among these species, in particular, the Melissa officinalis L. has been reported as having many biological activities, such as antioxidant, antimicrobial, antitumour, antiviral, antiallergic, anti-inflammatory, and also flatulence inhibiting effects. The beneficial properties of the Melissa officinalis, also known as “lemon balm herb”, can be related to the bioactive compounds such as terpenoids, alcohols, rosmarinic acid, and phenolic antioxidants which are present in the plant. In this updated review, the botanical, geographical, nutritional, phytochemical, and traditional medical aspects of M. officinalis have been considered as well as in vitro and in vivo and clinically proven therapeutic properties have been reviewed with a special focus on health-promoting effects and possible perspective nutraceutical applications. To evidence the relevance of this plant in the research and completely assess the context, a literature quantitative research analysis has been performed indicating the great interest towards this plant for its beneficial properties.

2021 ◽  
Vol 17 ◽  
Author(s):  
Amirhossein Nazhand ◽  
Alessandra Durazzo ◽  
Massimo Lucarini ◽  
Amelia M. Silva ◽  
Selma B. Souto ◽  
...  

: Medicinal plants have been globally exploiting as an alternative to chemical drugs in the treatment of several diseases due to low unwanted side effects, environmentally friendly nature and low production costs, therefore, it is important to analyze the therapeutic properties of various medicinal plants to understand their potential bioactivity. Uncaria tomentosa is one of these medicinal plants with many health-promoting effects. Although the geographical resources of cat's claw go back to the remote tropics of the Amazon, industrialized countries use the plant extensively in trade. Various parts of the plants such as flowers, leaves, Stem, hook, and seed are mainly used medicinally to treat inflammation, asthma, allergies, skin impurities, microbial infections, neurodegenerative diseases, cancer, cirrhosis, gastrointestinal disorders, arthritis, heart disease, rheumatism, and fever. The end point of this review article is to prospectively scrutinize in vitro and in vivo the therapeutic potential of this plant, especially in terms of its nutritional applications and health beneficial effects.


Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 761
Author(s):  
Eliana B. Souto ◽  
Alessandra Durazzo ◽  
Amirhossein Nazhand ◽  
Massimo Lucarini ◽  
Massimo Zaccardelli ◽  
...  

Medicinal plants are used worldwide due to their lower risk of side effects and eco-friendly, cost-effective production when compared to chemical drugs, encouraging researchers to further exploit the therapeutic potential of the former. One of the most popular medicinal plants is Vitex agnus-castus L., grown in tropical and sub-tropical regions, to which different health benefits have already been attributed. In this perspective article, the in vitro and in vivo therapeutic properties of V. agnus-castus L. have been analyzed and reviewed with a special focus on its health-promoting effects and potential nutraceutical applications.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 614
Author(s):  
Manoj Kumar ◽  
Sushil Changan ◽  
Maharishi Tomar ◽  
Uma Prajapati ◽  
Vivek Saurabh ◽  
...  

Annona squamosa L. (custard apple) belongs to the family Annonaceae and is an important tropical fruit cultivated in the West Indies, South and Central America, Ecuador, Peru, Brazil, India, Mexico, the Bahamas, Bermuda, and Egypt. Leaves of custard apple plants have been studied for their health benefits, which are attributed to a considerable diversity of phytochemicals. These compounds include phenol-based compounds, e.g., proanthocyanidins, comprising 18 different phenolic compounds, mainly alkaloids and flavonoids. Extracts from Annona squamosa leaves (ASLs) have been studied for their biological activities, including anticancer, antidiabetic, antioxidant, antimicrobial, antiobesity, lipid-lowering, and hepatoprotective functions. In the current article, we discussed the nutritional and phytochemical diversity of ASLs. Additionally, ASL extracts were discussed with respect to their biological activities, which were established by in vivo and in vitro experiments. A survey of the literature based on the phytochemical profile and health-promoting effects of ASLs showed that they can be used as potential ingredients for the development of pharmaceutical drugs and functional foods. Although there are sufficient findings available from in vitro and in vivo investigations, clinical trials are still needed to determine the exact effects of ASL extracts on human health.


2018 ◽  
Vol 9 (4) ◽  
pp. 2051-2069 ◽  
Author(s):  
Faiza Mejri ◽  
Slimen Selmi ◽  
Alice Martins ◽  
Haifa benkhoud ◽  
Tarek Baati ◽  
...  

Broad bean pods have been proven to be a functional food with promising in vitro and in vivo biological activities.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 609 ◽  
Author(s):  
Amjad Khan ◽  
Muhammad Ikram ◽  
Jong Ryeal Hahm ◽  
Myeong Ok Kim

Neurodegenerative disorders have emerged as a serious health issue in the current era. The most common neurodegenerative disorders are Alzheimer’s disease (AD), Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis (ALS). These diseases involve progressive impairment of neurodegeneration and memory impairment. A wide range of compounds have been identified as potential neuroprotective agents against different models of neurodegeneration both in vivo and in vitro. Hesperetin, a flavanone class of citrus flavonoid, is a derivative of hesperidin found in citrus fruits such as oranges, grapes, and lemons. It has been extensively reported that hesperetin exerts neuroprotective effects in experimental models of neurodegenerative diseases. In this systematic review, we have compiled all the studies conducted on hesperetin in both in vivo and in vitro models of neurodegeneration. Here, we have used an approach to lessen the bias in each study, providing a least biased, broad understanding of findings and impartial conclusions of the strength of evidence and the reliability of findings. In this review, we collected different papers from a wide range of journals describing the beneficial effects of hesperetin on animal models of neurodegeneration. Our results demonstrated consistent neuroprotective effects of hesperetin against different models of neurodegeneration. In addition, we have summarized its underlying mechanisms. This study provides the foundations for future studies and recommendations of further mechanistic approaches to conduct preclinical studies on hesperetin in different models.


Biomolecules ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1106
Author(s):  
Natasha Rios Leite ◽  
Laura Costa Alves de Araújo ◽  
Paola dos Santos da Rocha ◽  
Danielle Araujo Agarrayua ◽  
Daiana Silva Ávila ◽  
...  

Fruits are sources of bioactive compounds that are responsible for several biological activities. Therefore, this study aimed to identify the chemical composition of the pulp of the Brazilian Savanna fruit Dipteryx alata; evaluate its toxic effects, influence on the life expectancy of the nematode Caenorhabditis elegans, and its antioxidant activities in vitro and in vivo; and describe the mechanisms involved. The chemical compounds identified include phenols, terpenes, fatty acid derivatives, vitamins, and a carboxylic acid. The in vitro antioxidant activity was demonstrated by radical scavenging methods. in vivo, the D. alata fruit pulp was not toxic and promoted resistance to oxidative stress in nematodes exposed to a chemical oxidizing agent. Furthermore, it promoted an increased life expectancy in wild-type nematodes and increased the expression of superoxide dismutase and the nuclear translocation of DAF-16. These results suggest that the beneficial effects identified are related to these two genes, which are involved in the regulation of metabolic activities, the control of oxidative stress, and the lifespan of C. elegans. These beneficial effects, which may be related to its chemical constituents, demonstrate its potential use as a functional and/or nutraceutical food.


2011 ◽  
Vol 345 ◽  
pp. 349-354 ◽  
Author(s):  
Jia Lei Li ◽  
Yuan Gang Zu ◽  
Xiu Hua Zhao ◽  
Dong Mei Zhao ◽  
Xiao Qiang Chen ◽  
...  

Resveratrol (RES) is a naturally occurring triphenolic phytoalexin compound exerting numerous beneficial effects in the organism. It has a wide range of biological activities in vitro as well as in vivo, such as anti-cancer, antioxidant, anti-inflammatory and beneficial cardiovascular effects. But, its low solubility in water led to its poor absorption in vivo and low bioavailability. Bovine serum album (BSA) nanoparticles have emerged as versatile desired carrier systems due to its ready availability, biodegradability, lack of toxicity and immunogenicity with fast development of nano technology. In this study, RES-BSANPS were prepared by a desolvation method and chemical cross-linking with glutaraldehyde successfully. Results controlled conditions (concentration of BSA, 10 mg/ml; pH = 9.0; volume of ethanol, 6 ml; volume of 0.25 % glutaraldehyde, 100 µl; amount of RES, 6.7 mg; cross-linking time, 24 h at room temperature (1 ml/min)) for entrapment efficiency, loading efficiency, mean particle size and zeta potential, were found to be 88.7 %, 39.4 %, 175.4 ± 0.5 nm, -35.93 ± 0.79 mV, respectively.


2020 ◽  
Vol 9 ◽  
Author(s):  
Fellipe Lopes De Oliveira ◽  
Thaise Yanka Portes Arruda ◽  
Renan Da Silva Lima ◽  
Sabrina Neves Casarotti ◽  
Maressa Caldeira Morzelle

Pomegranate, a recognized source of phenolic compounds, has been associated with health-promoting benefits, mostly due to its antioxidant activity. Ellagic and gallic acids, anthocyanins, and ellagitannins are the main phenolics in pomegranate, showing antioxidant activity. For this reason, pomegranate has been used in foods, such as meat products, as an attempt to retard lipid oxidation and increase shelf-life. In recent years, in vitro, in vivo, and human studies reported the antioxidant activity of pomegranate, especially its peels, with reduced incidence of chronic diseases (e.g., cardiovascular ailments, cancer, neurodegenerative disease, type 2 diabetes, chronic kidney disease). This review aims to present the main antioxidant compounds on pomegranate and their biological effects, the antioxidant activity of pomegranate-based foods, the application of pomegranate as a natural antioxidant food additive, the role of pomegranate in the prevention and management of chronic diseases, as well as the trends and prospects regarding the application of pomegranate in innovative food and health.


2013 ◽  
Vol 27 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Hao Zhang ◽  
Dandan Yu ◽  
Jing Sun ◽  
Xianting Liu ◽  
Lu Jiang ◽  
...  

Polyphenols are dietary constituents of plants associated with health-promoting effects. In the human diet, polyphenols are generally consumed in foods along with macronutrients. Because the health benefits of polyphenols are critically determined by their bioavailability, the effect of interactions between plant phenols and food macronutrients is a very important topic. In the present review, we summarise current knowledge, with a special focus on the in vitro and in vivo effects of food macronutrients on the bioavailability and bioactivity of polyphenols. The mechanisms of interactions between polyphenols and food macronutrients are also discussed. The evidence collected in the present review suggests that when plant phenols are consumed along with food macronutrients, the bioavailability and bioactivity of polyphenols can be significantly affected. The protein–polyphenol complexes can significantly change the plasma kinetics profile but do not affect the absorption of polyphenols. Carbohydrates can enhance the absorption and extend the time needed to reach a maximal plasma concentration of polyphenols, and fats can enhance the absorption and change the absorption kinetics of polyphenols. Moreover, as highlighted in the present review, not only a nutrient alone but also certain synergisms between food macronutrients have a significant effect on the bioavailability and biological activity of polyphenols. The review emphasises the need for formulations that optimise the bioavailability and in vivo activities of polyphenols.


2020 ◽  
Vol 17 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Milad Ashrafizadeh ◽  
Zahra Ahmadi ◽  
Reza Mohammadinejad ◽  
Tahereh Farkhondeh ◽  
Saeed Samarghandian

: Flavonoids are a large group of naturally occurring compounds, which are of interest due to their great pharmacological effects and health-promoting impacts. These properties have led to their extensive application in a variety of pathological conditions, particularly cancer. Flavonoids are used in large quantities in a human's daily diet and a high amount of flavonoids are found in the intestine after oral usage. However, flavonoid concentrations in tissue/plasma are low because of their low bioavailability, the leading to the low efficacy of flavonoids in different clinical disorders. For this reason, nanotechnology application for delivering flavonoids to tumor sites has recently received significant attention. Silibinin is a key member of flavonoids and a bioactive component of silymarin, which is widely isolated from Silybum marianum. This plant-derived chemical has a number of valuable biological and therapeutic activities such as antioxidant, anti-inflammatory, neuroprotective, anti-tumor, hepatoprotective, cardioprotective and anti-diabetic. These beneficial effects have been demonstrated in in vivo and in vitro experiments. However, it seems that silibinin has a variety of limitations and poor bioavailability is the most important factor restricting its wide application. Hence, there have been attempts to improve the bioavailability of silibinin and it has been suggested that nano-soldiers are potential candidates for this aim. In the present review, we describe the different drug delivery systems for improving the bioavailability of silibinin.


Sign in / Sign up

Export Citation Format

Share Document