scholarly journals MiR-429 Inhibits the Angiogenesis of Human Brain Microvascular Endothelial Cells through SNAI2-Mediated GSK-3β/β-Catenin Pathway

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yameng Sun ◽  
Shenghao Ding ◽  
Yiling Fan ◽  
Fei Shen ◽  
Qing Dong ◽  
...  

MicroRNA (miRNA) dysfunction has been confirmed as a key event of ischemic stroke appearance. This study is aimed at revealing the role of miR-429 in the angiogenesis of HBMECs. The HBMECs were treated with oxygen and glucose deprivation (OGD) to establish the ischemic cell model. The qRT-PCR was used to measure the expression levels of the miR-429 in the serums of the patients or cells, and CCK-8, wound healing assay, and tube formation assay were used to observe the effects of miR-429 on the phenotype of HBMECs. Moreover, the Targetscan, dual-luciferase reporter assay, and Western blot were used to reveal the downstream target and regulation mechanism of miR-429 in OGD-induced HBMECs. The results showed that miR-429 was significantly upregulated in the serums of the patients, and overexpressed miR-429 could extremely inhibit the viability, migration, and tube formation of OGD-induced HBMECs. Furthermore, it was found that SNAI2 was a downstream factor of miR-429, and SNAI2 could rescue the effects of miR-429 on OGD-induced HBMECs. Besides, the Western blot showed that miR-429 could affect the activity of GSK-3β/β-catenin pathway via inhibiting the expression of SNAI2. In conclusion, this study suggests that miR-429 inhibits the angiogenesis of HBMECs through SNAI2-mediated GSK-3β/β-catenin pathway.

2022 ◽  
Author(s):  
Kaifei Chu ◽  
Niannian Zhao ◽  
Rong Feng ◽  
Li Zhang ◽  
Xudong Hu ◽  
...  

Abstract Background: Various metabolism diseases are closely related to lipid metabolism disorder, but long noncoding-RNAs (lncRNA) involve in regulating function of lipid was limited elucidated. Previous our work have found that lnc027912 involve in cholesterol metabolism. Here, we further explore the role of lipid metabolism-associated lncRNA-lnc027912 in oleic acid- (OA) and palmitic acid (PA)-induced hepatic cells. Methods: The overexpression of lnc027912 cell model was constructed by using virus particles transfection, and the level of lnc027912 in AML12 cells were detected by RT-qPCR. High fat cell model was established by treating AML12 cells with OA and PA, and the level of lipid drops was detected by Oil red O staining and triglyceride analyze Kit. The lipid metabolism related-genes, such as SREBP1C, FAS, PPARγ, MTTP, ApoE and ApoC3 level, was detected using RT-qPCR and Western blot. The role of SREBP1C in lipid metabolism was further analyzed using double luciferase reporter gene assay and Immunofluorescence. The Akt/mTOR signal pathway related genes was detected by Western blot. Results: We found that TG level was inhibited in overexpression of lnc027912 cell. Upregulated lnc027912 of AML12 cells treated with OA and PA showed a significant decrease in lipid accumulation and TG levels. Furthermore, overexpression of lnc027912, the lipid biosynthesis genes of SREBP1C, FAS and PPARγ was significantly decreased and a significant increase in expression of MTTP and ApoE. Interestingly, lnc027912 inhibited Akt/mTOR signaling axis and decreased SREBP1C transit into nucleus and the promoter activity of SREBP1C and regulated expression of its targets. Conclusions: Our study revealed a new insights into the molecular function of lnc027912 in lipid metabolism by Akt/mTOR/SREBP1C signaling axis and highlights the potential of lnc027912 as a new therapeutic target for lipid disorder diseases (such as, NAFLD).


Author(s):  
Hangqi Ren ◽  
Wei Mu ◽  
Qiaolian Xu

Sepsis is a systemic inflammatory response syndrome caused by various pathogenic microorganisms or toxins. Lung damage is one of the causes of death in patients with sepsis. This study aimed to investigate the role of miR-19a-3p and its regulation mechanism in sepsis-induced lung injury. MH-S cells were treated with lipopolysaccharide (LPS) to establish sepsis-induced lung injury cell model. C57BL/6 mice were injected with miR-19a-3p antagomiR and LPS to construct animal model. LPS-treated and control cells were transfected with miR-19a-3p mimic, miR-19a-3p inhibitor or USP13 expression vector . The expression levels of miR-19a-3p and USP13 were examined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The concentration of inflammatory cytokines was measured with enzyme-linked immunosorbent assay (ELISA). The relationship of miR-19a-3p and USP13 was validated using dual-luciferase reporter assay. The lung damage was assessed with hematoxylin-eosin staining (HE). The results showed that LPS treatment increased the concentration of TNF-α, IL-6 and IL-1β in MH-S cells. In LPS treated MH-S cells, the level of miR-19a-3p gradually increased over time. Both miR-19a-3p knockdown and USP13 overexpression in MH-S cells inhibited the LPS-induced production of TNF-α, IL-6 and IL-1β. Moreover, miR-19a-3p negatively regulated the expression of USP13 in MH-S cells. Furthermore, miR-19a-3p inhibitor suppressed lung damage in sepsis model mice. In conclusion, miR-19a-3p knockdown could alleviate sepsis-induced lung injury through enhancing USP13 expression.


2021 ◽  
Vol 35 ◽  
pp. 205873842096608
Author(s):  
Ran Du ◽  
Feng Jiang ◽  
Yanhua Yin ◽  
Jinfen Xu ◽  
Xia Li ◽  
...  

Long non-coding RNA (lncRNA) X inactive specific transcript (XIST) is reported to play an oncogenic role in non-small cell lung cancer (NSCLC). However, the role of XIST in regulating the radiosensitivity of NSCLC cells remains unclear. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expressions of XIST and miR-16-5p in NSCLC in tissues and cells, and Western blot was used to assess the expression of WEE1 G2 checkpoint kinase (WEE1). Cell counting kit-8 (CCK-8), colony formation and flow cytometry assays were used to determine cell viability and apoptosis after NSCLC cells were exposed to different doses of X-rays. The interaction between XIST and miR-16-5p was confirmed by StarBase database, qRT-PCR and dual-luciferase reporter gene assays. TargetScan database was used to predict WEE1 as a target of miR-16-5p, and their targeting relationship was further validated by Western blot, qRT-PCR and dual-luciferase reporter gene assays. XIST was highly expressed in both NSCLC tissue and cell lines, and knockdown of XIST repressed NSCLC cell viability and cell survival, and facilitated apoptosis under the irradiation. MiR-16-5p was a target of XIST, and rescue experiments demonstrated that miR-16-5p inhibitors could reverse the role of XIST knockdown on radiosensitivity in NSCLC cells. WEE1 was validated as a target gene of miR-16-5p, and WEE1 could be negatively regulated by XIST. XIST promotes the radioresistance of NSCLC cells by regulating the expressions of miR-16-5p and WEE1, which can be a novel target for NSCLC therapy.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Ran Fu ◽  
Wenwen Du ◽  
Zongli Ding ◽  
Yi Wang ◽  
Yue Li ◽  
...  

AbstractNeovascularization is a key factor that contributes to tumor metastasis, and vasculogenic mimicry (VM) is an important form of neovascularization found in highly invasive tumors, including lung cancer. Despite the increasing number of studies focusing on VM, the mechanisms underlying VM formation remain unclear. Herein, our study explored the role of the HIF-1α/NRP1 axis in mediating lung adenocarcinoma metastasis and VM formation. HIF-1α, NRP1 expression, and VM in lung adenocarcinoma (LUAD) patient samples were examined by immunohistochemical staining. Quantitative real-time (qRT-PCR), western blot, transwell assay, wound healing assay, and tube formation assay were performed to verify the role of HIF-1α/NRP1 axis in LUAD metastasis and VM formation. ChIP and luciferase reporter assay were used to confirm whether NRP1 is a direct target of HIF-1α. In LUAD tissues, we confirmed a positive relationship between HIF-1α and NRP1 expression. Importantly, high HIF-1α and NRP1 expression and the presence of VM were correlated with poor prognosis. We also found that HIF-1α could induce LUAD cell migration, invasion, and VM formation by regulating NRP1. Moreover, we demonstrated that HIF-1α can directly bind to the NRP1 promoter located between −2009 and −2017 of the promoter. Mechanistically, MMP2, VE-cadherin, and Vimentin expression were affected. HIF-1α plays an important role in inducing lung adenocarcinoma cell metastasis and VM formation via upregulation of NRP1. This study highlights the potential therapeutic value of targeting NRP1 for suppressing lung adenocarcinoma metastasis and progression.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Zhuo-Ma Luoreng ◽  
Da-Wei Wei ◽  
Xing-Ping Wang

AbstractMastitis is a complex inflammatory disease caused by pathogenic infection of mammary tissue in dairy cows. The molecular mechanism behind its occurrence, development, and regulation consists of a multi-gene network including microRNA (miRNA). Until now, there is no report on the role of miR-125b in regulating mastitis in dairy cows. This study found that miR-125b expression is significantly decreased in lipopolysaccharide (LPS)-induced MAC-T bovine mammary epithelial cells. Also, its expression is negatively correlated with the expression of NF-κB inhibitor interacting Ras-like 2 (NKIRAS2) gene. MiR-125b target genes were identified using a double luciferase reporter gene assay, which showed that miR-125b can bind to the 3′ untranslated region (3′ UTR) of the NKIRAS2, but not the 3′UTR of the TNF-α induced protein 3 (TNFAIP3). In addition, miR-125b overexpression and silencing were used to investigate the role of miR-125b on inflammation in LPS-induced MAC-T. The results demonstrate that a reduction in miR-125b expression in LPS-induced MAC-T cells increases NKIRAS2 expression, which then reduces NF-κB activity, leading to low expression of the inflammatory factors IL-6 and TNF-α. Ultimately, this reduces the inflammatory response in MAC-T cells. These results indicate that miR-125b is a pro-inflammatory regulator and that its silencing can alleviate bovine mastitis. These findings lay a foundation for elucidating the molecular regulation mechanism of cow mastitis.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xiaoting Li ◽  
Xiang Xue ◽  
Yuejun Sun ◽  
Lei Chen ◽  
Ting Zhao ◽  
...  

Abstract Background Our study sought to investigate the therapeutic effects and mechanisms of miR-326-5p-overexpressing endothelial progenitor cells (EPCs) on acute myocardial infarction (AMI). Methods Mouse EPCs were isolated, purified, and identified by flow cytometry and uptake of DiI-ac-LDL. The target gene of miR-326-5p was predicted using target prediction algorithms and verified by dual-luciferase reporter assay, RT-qPCR, and Western blot. After EPCs were transfected with the agomir or antagomir of miR-326-5p, tube formation assay and Matrigel plug angiogenesis assay were conducted in four groups (NC, miR-326-5p agomir, miR-326-5p antagomir, and miR-326-5p agomir+Wnt1 agonist). In addition, a mouse model of MI was established and treated with the injection of miR-326-5p-EPCs, miR-326-5p-EPCs+ Wnt1 agonist, EPCs-NC, or PBS/control into the peri-infarcted myocardium. Subsequently, cardiac function was monitored by echocardiography at 7 and 28 days postoperatively. Finally, the infarcted hearts were collected at 28 days, and the size of myocardial infarction was measured by Masson’s trichrome staining and the neovascularization in the peri-infarcted area was examined through immunofluorescence staining. Results Luciferase reporter assay indicated that Wnt1 was a direct target of miR-326-5p. Using RT-qPCR and Western blot analysis, we further demonstrated that the expression level of Wnt1 was negatively correlated with miR-326-5p expression in EPCs. Both in vitro study of tube formation assay and in vivo investigation of subcutaneous Matrigel plug assay revealed that the miR-326-5p agomir could significantly enhance the angiogenic capacity of EPCs, and this effect was partially inhibited by Wnt1 agonist. Meanwhile, miR-326-5p antagomir could obviously reduce the the angiogenic capacity of EPCs in vivo compared with that in the NC group. Moreover, the transplantation of miR-326-5p-overexpressing EPCs in the ischemic hearts of mice significantly enhanced the angiogenesis in the peri-infarcted zone and improved the cardiac function. However, the enhanced capacity of angiogenesis of miR-326-5p-overexpressing EPCs was remarkably neutralized by Wnt1 agonist, accompanied by the decreased improvement in cardiac function. Conclusion miR-326-5p significantly enhanced the angiogenic capacity of EPCs. Transplantation of miR-326-5p-overexpressing EPCs improved cardiac function for AMI therapy, which can be a novel strategy for enhancing therapeutic angiogenesis in ischemic heart diseases.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Hai-Yan Jia ◽  
Kai Zhang ◽  
Wen-Jing Lu ◽  
Gui-Wen Xu ◽  
Jian-Fen Zhang ◽  
...  

Abstract Background It was reported that microRNA-21(miR-21) was differentially expressed in the keratinocytes of psoriasis patients, and it may influence the apoptosis and proliferation of cells. The role of lncRNA maternally expressed gene3 (MEG3), a competing endogenous RNAs of miR-21, in the progression of psoriasis remains unclear. We aimed to unfold the influence of MEG3 and miR-21 on the proliferation and apoptosis of psoriasis epidermal cells. Methods 50μg/L TNF-α was used to treat HaCaTs and NHEKs cells for 24 h, and then different experiments were conducted. qRT-PCR were applied for measuring the mRNA level of MEG3, miR-2, and caspase-8, and the protein expression of caspase-8 was measured with western blotting. Flow cytometry was used for assessing apoptosis. Cell proliferation was detected using MTT and colony formation assays. Dual luciferase reporter assay was applied for confirming the binding site between MEG3 and miR-21, miR-21 and Caspase-8. Results A cell model for in vitro studying the role of MEG3 in psoriasis pathophysiology was established using HaCaT and HHEKs. MEG3 was significantly down-regulated in HaCaT, HHEKs, and psoriatic skin samples. MEG3 inhibits proliferation and promotes apoptosis of Activated-HaCaT (Act-HaCaT) and Activated-HHEKs (Act- HHEK) by regulating miR-21, and the binding site between MEG3 and miR-21 was identified. We also found that miR-21 could inhibit the level of caspase-8 and identified the binding site between caspase-8 and miR-21. Some down-stream proteins of caspase-8, Cleaved caspase-8, cytc, and apaf-1 were regulated by miR-21 and MEG3. Conclusion MEG3/miR-21 axis may regulate the expression of caspase-8, and further influence the proliferation and apoptosis of psoriasis keratinocyte, Act-HaCaT and Act- HHEK. Therefore, our findings may provide a new thought for the study of pathogenesis and treatment of psoriasis.


2019 ◽  
Vol 39 (8) ◽  
Author(s):  
Liyuan Zou ◽  
Xiaokun Ma ◽  
Shuo Lin ◽  
Bingyuan Wu ◽  
Yang Chen ◽  
...  

Abstract Long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) plays an important role in protection of ischemia–reperfusion (I/R) injury in brain and liver. However, role of MEG3 in myocardial I/R injury remains unclear. Here, the role of MEG3 in protection of myocardial I/R injury and its association with microRNA-7-5p (miR-7-5p) was investigated using rat cardiac I/R model and myocardial I/R cell model. Our results showed that MEG3 was significantly up-regulated and miR-7-5p was significantly down-regulated after I/R. Following I/R, the levels of intact PARP and intact caspase-3 were reduced, while the cleaved fragments of PARP and caspase-3 were increased. TUNEL assay showed an increase in cardiomyocyte apoptosis after I/R. The levels of I/R-induced creatine kinase (CK) and lactate dehydrogenase (LDH) were inhibited by knockdown of MEG3 (siMEG3). SiMEG3 increased cell proliferation and inhibited cell apoptosis after I/R. In contrast, overexpression of MEG3 increased the I/R-induced CK and LDH activities and cell apoptosis and decreased cell proliferation. The dual-luciferase reporter system showed a direct binding of MEG3 to miR-7-5p. The level of miR-7-5p was negatively associated with the change in levels of MEG3 in H9c2 cells. The levels of intact RARP1 and caspase-3 were significantly increased by knockdown of MEG3. Co-transfection of miR-7-5p inhibitor with siMEG3 activates CK and LDH, significantly decreased cell proliferation, increased cell apoptosis, and decreased intact poly(ADP-ribose) polymerase 1 (PARP1) and caspase-3. In summary, down-regulation of MEG3 protects myocardial cells against I/R-induced apoptosis through miR-7-5p/PARP1 pathway, which might provide a new therapeutic target for treatment of myocardial I/R injury.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuting Zhuang ◽  
Tingting Li ◽  
Hongwen Xiao ◽  
Jiaxu Wu ◽  
Shuang Su ◽  
...  

Purpose: Cardiomyocyte senescence is associated with a progressive decline in cardiac physiological function and the risk of cardiovascular events. lncRNA H19 (H19), a well-known long noncoding RNA (lncRNA), is involved in the pathophysiological process of multiple cardiovascular disease such as heart failure, cardiac ischemia and fibrosis. However, the role of H19 in cardiomyocyte senescence remains to be further explored.Methods: Senescence-associated β-galactosidases (SA-β-gal) staining was used to detect cardiomyocyte senescence. Western blot, qRT-PCR and luciferase reporter assay were employed to evaluate the role of H19 in cardiomyocyte senescence and its underling molecular mechanism.Results: H19 level was significantly increased in high glucose-induced senescence cardiomyocytes and aged mouse hearts. Overexpression of H19 enhanced the number of SA-β-gal-positive cells, and the expression of senescence-related proteins p53 and p21, whereas H19 knockdown exerted the opposite effects. Mechanistically, H19 was demonstrated as a competing endogenous RNA (ceRNA) for microRNA-19a (miR-19a): H19 overexpression downregulated miR-19a level, while H19 knockdown upregulated miR-19a. The expression of SOSC1 was dramatically increased in senescence cardiomyocytes and aged mouse hearts. Further experiments identified SOCS1 as a downstream target of miR-19a. H19 upregulated SOCS1 expression and activated the p53/p21 pathway by targeting miR-19a, thus promoting the cardiomyocytes senescence.Conclusion: Our results show that H19 is a pro-senescence lncRNA in cardiomyocytes acting as a ceRNA to target the miR-19a/SOCS1/p53/p21 pathway. Our research reveals a molecular mechanism of cardiomyocyte senescence regulation and provides a novel target of the therapy for senescence-associated cardiac diseases.


2020 ◽  
Author(s):  
Fan Yuning ◽  
Chen Liang ◽  
Wang Tenghuan ◽  
Nan Zhenhua ◽  
Shengkai Gong

Abstract The aim of the study was to explore the function and mechanism of lincRNA PADNA in bupivacaine-induced neurotoxicity. Mouse DRG neurons were cultured in vitro and treated with bupivacaine to establish the neurotoxicity model. Caspase3 activity, cell viability, tunel assay were analyzed to assess the role of lincRNA PADNA. Dual-luciferase reporter assay was used to determine the binding target of lincRNA PANDA. The expression of lincRNA PADNA was significantly increased with the increasing concentration of bupivacaine. Functional analysis revealed that knockdown of lincRNA PADNA accelerated the caspase3 activity and inhibited the cell viability. Western blot showed that knockdown of lincRNA PADNA promoted the occurrence of cleaved-caspase3. We also proved that lincRNA PADNA may bind with miR-194. Overexpression of miR-194 could rescued the function of lincRNA PADNA, suggesting that lincRNA PADNA may sponge miR-194. In addition, we provided new evidences that lincRNA PADNA/miR-194/FBXW7 axis play an important role in the neurotoxicity process. We performed comprehensive experiments to verify the function and mechanism of lincRNA PADNA in bupivacaine-induced neurotoxicity. Our study provided new evidences and clues for prevention of neurotoxicity.


Sign in / Sign up

Export Citation Format

Share Document