scholarly journals Protective Effect of the Abelmoschus manihot Flower Extract on DSS-Induced Ulcerative Colitis in Mice

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bensheng Wu ◽  
Qing Zhou ◽  
Zongqi He ◽  
Xiaopeng Wang ◽  
Xueliang Sun ◽  
...  

Background. The flower of Abelmoschus manihot (AM) has been widely used in the treatment of chronic inflammatory diseases, including ulcerative colitis. This paper aimed to confirm the therapeutic effect of AM on ulcerative colitis (UC) and explore its mechanism. Methods. Mouse models were induced by 2.5% dextran sulfate sodium (DSS) and treated with AM. UC signs, symptoms, colon macroscopic lesion scores, and disease activity index (DAI) scores were observed. Colon levels of interleukin- (IL-) 6, IL-1β, IL-18, IL-17, tumor necrosis factor- (TNF-) α, and IL-10 were quantified by ELISA. The colon protein expression levels of NLRP3, ASC, caspase 1 p10, β-arrestin1, ZO-1, occludin-1, and claudin-1 were examined by immunohistochemistry and western blotting. The mRNA levels of IL-1β, IL-18, NLRP3, ASC, and caspase 1 p10 in the colon were determined by real-time quantitative polymerase chain reaction (qPCR). Results. After treatment with AM, the mortality of mice, pathological damage to the colon, splenomegaly, and the spleen coefficient were decreased. AM reduced the levels of proinflammatory cytokines (IL-6, IL-1β, IL-18, IL-17, and TNF-α) and increased the level of IL-10. The mRNA expression levels of NLRP3, ASC, and caspase 1 in colon tissue were decreased by AM in a dose-dependent manner. In addition, AM also reduced the protein expression of NLRP3, ASC, caspase 1 p10, IL-1β, IL-18, and β-arrestin1 in the colon tissue of model mice. Western blot analysis confirmed that AM increased the expression of occludin-1, claudin-1, and ZO-1 in a dose-dependent manner. Conclusion. This study shows that AM has a significant therapeutic effect on mice with UC, and the mechanism may be related to the inhibition of the β-arrestin1/NLRP3 inflammasome signaling pathway and the protection of intestinal barrier function.

2019 ◽  
Vol 48 (3) ◽  
pp. 030006051987346 ◽  
Author(s):  
Jun Zhang ◽  
Jing Yin ◽  
Daohong Zhao ◽  
Chaoran Wang ◽  
Yuhao Zhang ◽  
...  

Objective To study the therapeutic effect and mechanism of action of quercetin in a rat model of osteoarthritis (OA). Methods The OA rat model was established by intra-articular injection of papain. Changes in knee diameter, toe volume and histopathology were measured. Levels of interleukin (IL)-β and tumor necrosis factor (TNF)-α were assessed by ELISA. Relative expression of Toll-like receptor (TLR)-4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was evaluated by western blotting. Results Compared with rats treated with papain alone, changes in knee diameter, toe volume and Makin' s score were less apparent in OA rats treated with quercetin. Levels of serum IL-1β and TNF-α were also reduced in quercetin-treated OA rats. Expression of TLR-4 and NF-κB was significantly suppressed in a dose-dependent manner in quercetin-treated OA rats. Conclusion Quercetin exhibited a therapeutic effect in OA rats, which may be related to inhibition of IL-1β and TNF-α production via the TLR-4/NF-κB pathway.


1997 ◽  
Vol 16 (10) ◽  
pp. 577-588 ◽  
Author(s):  
Tiziana Dandrea ◽  
Ba Tu ◽  
Anders Blomberg ◽  
Thomas Sandström ◽  
Magnus Sköld ◽  
...  

Human alveolar macrophages (AMs) obtained from smokers and non-smokers by bronchoalveolar lavage (BAL) were subjected to various concentrations of NO2 in an inverted monolayer exposure model. Culture super natants were collected 4 h after the exposure and assayed for secreted TNF-α, IL-1β, IL-8 and MIP-1α. The steady state levels of the mRNAs for these cytokines were also analysed in the cells. The adherence of BAL cells to plastic prior to exposure to the gas elevated the steady state mRNA levels of all four cytokines tested in smoker's cells and that of TNF-α and IL-1β, but not IL-8 (MIP-1α not tested), in non-smoker's cells. Interestingly, adherent cells from non-smokers released circa 15-, 3-,1.5- and 3-fold the amounts of IL-1β, IL-8, TNF-α and MIP-1α, respectively, than smoker's cells during control incubation or exposure to air. A 20 min exposure to NO2 (5 or 20 p.p.m.) did not increase the secretion of any of the cytokines from either cell type. In contrast, NO2 caused a concentration- dependent inhibition of the secretion of all cytokines except IL-1β from smoker's cells. Additionally, NO2 greatly diminished the release of all cytokines in response to further treatment with lipopolysaccharide (LPS). In contrast, only the secretion of TNF-α from non-smoker's cells was inhibited by the gas in a concentration- dependent manner, whilst LPS-induced secretion of the cytokines was not affected by the gas. The steady state levels of the respective mRNAs for each of the cytokines were not significantly affected in smoker's cells by exposure to NO2, except for a negative, dose-dependent trend in the case of TNF-α. Nitrogen dioxide also failed to elevate the levels of the mRNAs in non-smoker's cells but, again, tended to diminish the levels, particularly of IL-1β mRNA. However, exposure to the gas inhibited LPS- induced accumulation of cytokine mRNAs in smoker's cells only. The data suggest that macrophage-derived cytokine mediators of the sepsis response may not play a role in the generation of NO2-induced inflammation in the human lung. Conversely, the gas seems to non-specifically inhibit the release and/or production of cytokines, particularly from smoker's cells, at the post-transcrip tional level, and impairs the ability of the cells to increase the transcription and release of the cytokines in response to bacterial LPS. The fact that NO2 seriously impaired the already diminished capacity of smoker's cells to release several important pro-inflammatory cytokines, both under control conditions and in response to LPS, strongly suggest that the inhalation of NO2 in cigarette smoke may contribute to impairing host defence against infection in the lung.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qiu-Yue Wang ◽  
Na Zhang ◽  
Shu-Yu Liu ◽  
Xi-Hong Jiang ◽  
Shu-Min Liu

Huangqi Chifeng Tang (HQCFT), a traditional Chinese formula of three herbs, has been used to treat cerebral infarction (CI). Saposhnikoviae Radix (SR) was designed as a guiding drug for HQCFT to improve its angiogenic and anti-inflammatory effects. In this study, TTC staining was used to detect the area of CI. H&E staining was used to detect the histopathologic changes in the cerebral tissue. Western blotting was performed to detect the protein expression of NLRP3, caspase 1, IL-1β, IL-6, TNF-α, MMP-9, VEGF, and VEGFR2 in cerebral tissue. Immunohistochemistry was used to detect the protein expression of MMP-9, VEGF, and VEGFR2. The contents of HIF-1α, NLRP3, caspase 1, IL-1β, IL-6, and TNF-α in the serum were determined by ELISA. Our study showed that HQCFT and HQCFT-SR could improve the pathological condition and reduce the infarcted area of the brain tissue in a rat model. In addition, HQCFT and HQCFT-SR significantly decreased the expression levels and serum contents of NLRP3, caspase 1, IL-1β, IL-6, and TNF-α; increased the expression levels of the VEGF and VEGFR2 proteins; and obviously reduced the serum content of HIF-1α. Importantly, the cytokines in brain tissue and serum from the HQCFT group exhibited better efficacy than those from the HQCFT-SR group. HQCFT exerted significant angiogenic and anti-inflammatory effects in rats subjected to middle cerebral artery occlusion (MCAO); these effects can be attributed to the guiding and enhancing effect of SR.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yan Jiang ◽  
Li Zhao ◽  
Qing Chen ◽  
Lihong Zhou

Background. Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease of the colon and rectum. Recent studies found that berberine had effects on inflammatory diseases and immune diseases. Methods. The PharmMapper database was used to predict the berberine potential target and GeneCards database and OMIM database were utilized to collect UC genes. The Cytoscape software was used to construct and analyze the networks and DAVID was utilized to perform enrichment analysis. Then, animal experiments were performed to validate the prediction results. The experimental rats were randomly divided into normal group (control group), model group, and berberine group. The general condition, body weight, gross morphology of colon tissue, and colonic mucosal damage index (CMDI) score were observed. The pathological changes of colon tissue were observed by H&E staining. The levels of serum interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-4 were detected by ELISA. The expressions of IL-1β, TNF-α, and IL-4 protein in colon tissue were detected by immunohistochemistry. Results. A total of 211 Berberine’s potential targets and 210 UC genes were obtained. The enrichment analysis showed that berberine may regulate inflammation, inflammatory cytokines, and their mediated inflammation signal pathways such as inflammatory bowel disease (IBD), rheumatoid arthritis, cytokine-cytokine receptor interaction, TNF, T cell receptor, Toll-like receptor, and JAK/STAT signaling pathway. Compared with the model group, the body mass of rats in the berberine group was significantly increased ( P  < 0.05); the general morphology and pathological changes of colon tissue were significantly improved; CMDI score, serum and colon tissue IL-1β, TNF-α content, and protein expression were decreased significantly ( P  < 0.05); and IL-4 content and protein expression increased significantly ( P  < 0.05). Conclusion. Berberine can interfere with UC through related biological processes and signal pathways related to inflammation and immunity. In-depth exploration of the mechanism of berberine in the treatment of UC will provide a basis for clinical application.


2021 ◽  
Author(s):  
Juanfang Liu ◽  
Jianhao Zhang ◽  
Shanshan Xie ◽  
Yingxia Liu ◽  
Xueliang Zhou ◽  
...  

Abstract Background: The purpose of this study was to verify physiological, end-organ and systemic inflammatory changes in zone II after resuscitative endovascular balloon occlusion of the aorta (REBOA) in a normovolemic rabbit model.Methods: Anaesthetized rabbits were subjected to aortic balloon occlusion for different times (15 min, 30 min, 60 min and 90 min) followed by 2 h of reperfusion. Rabbits with no balloon occlusion were set as the control group. ELISAs were used to examine the serum levels of ALT, AST, Cr, BUN, MDA, SOD, IL-8, IL-6, and TNF-α; HE staining was used to identify the morphological changes in the kidney; RT-PCR was used to detect the mRNA levels of IL-6, IL-8, TNF-α and NF-κB in the kidney and uterus; and Western blotting was used to measure the protein expression levels of IL-6, IL-8, TNF-α and NF-κB in the kidney and uterus.Results: Plasma concentrations of liver markers, kidney markers, inflammatory factors and oxidative stress indicators were significantly increased at the end of reperfusion in the 30 min, 60 min and 90 min groups. Damage to the kidney occurred in the 30 min, 60 min and 90 min groups. The mRNA and protein expression levels of IL-6, IL-8, TNF-α and NF-κB in the kidney and uterus were significantly increased at the end of reperfusion in the 30 min group, and as the time of occlusion extended, these levels continued to increase.Conclusion: Activation of systemic inflammation and ischaemia-reperfusion injury of end-organs occurred when the occlusion time reached 30 min. Therefore, 15 min should be regarded as a safe period of REBOA in zone II.


2020 ◽  
Vol 21 (9) ◽  
pp. 3337 ◽  
Author(s):  
Hana Jin ◽  
Hye Jung Kim

The inflammasomes are reported to be associated with tumor progression. In our previous study, we determined that extracellular ATP enhances invasion and tumor growth by inducing inflammasome activation in a P2Y purinergic receptor 2 (P2Y2R)-dependent manner. However, it is not clear which inflammasome among the diverse complexes is associated with P2Y2R activation in breast cancer. Thus, in this study, we determined which inflammasome components are regulated by P2Y2R activation and are involved in tumor progression in breast cancer cells and radiotherapy-resistant (RT-R)-breast cancer cells. First, we found that NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3); NLR family caspase activation and recruitment domain (CARD) containing 4 (NLRC4); apoptosis-associated speck-like protein containing a CARD complex (ASC); and caspase-1 mRNA levels were upregulated in RT-R-MDA-MB-231 cells compared to MDA-MB-231 cells, whereas tumor necrosis factor-α (TNF-α) or ATP treatment induced NLRC4, ASC, and caspase-1 but not NLRP3 protein levels. Moreover, TNF-α or ATP increased protein levels of NLRC4, ASC, and caspase-1 in a P2Y2R-dependent manner in MDA-MB-231 and RT-R-MDA-MB-231 cells. In addition, P2Y2R activation by ATP induced the secretion of IL-1β and VEGF-A, as well as invasion, in MDA-MB-231 and RT-R-MDA-MB-231 cells, which was inhibited by NLRC4, ASC, and caspase-1 small interfering RNA (siRNA). Taken together, this report suggests that P2Y2R activation by ATP induces tumor invasion and angiogenesis through inflammasome activation, specifically by regulating the inflammasome components NLRC4, ASC, and caspase-1.


2021 ◽  
Vol 19 ◽  
pp. 205873922110586
Author(s):  
Qiang Shi ◽  
Ying-ying Zheng ◽  
Le Wang ◽  
Yi-dong Xue ◽  
Yan-ling Yang

Introduction Nucleotide-binding and oligomerization domain like receptors protein 3 (NLRP3) inflammasome-mediated interleukin (IL)-1β secretion plays an important role in the progression of Alzheimer’s disease (AD). Curcumin has been shown to improve cognitive impairment and learning ability of AD mice by reducing IL-1β secretion. However, its exact mechanism of action remains unclear. In the present study, we explored the relationship between the neuroprotective effect of curcumin and activation of the NLRP3 inflammasome pathway. Methods BV2 cells were primed with 500 ng/mL lipopolysaccharide (LPS) for 4 h and subsequently treated with 50 μM Aβ25-35 for 24 h or pretreated with 2.5–10 μM curcumin for 4 h and exposed to 50 μM Aβ25-35 for 24 h. The effects of curcumin and Aβ25-35 were assessed by the CCK8 assay. ELISA was used for the detection of IL-1β, IL-6, and tumor necrosis factor (TNF)-α levels in the supernatant of the cell culture medium. The viability of SH-SY5Y cells, which were incubated with conditioned medium (CM) was assessed using the CCK8 assay. The percentage of apoptotic SH-SY5Y cells incubated with CM was assessed using Annexin V-FITC/PI staining flow cytometry analysis. The expression levels of NLRP3, caspase-1 and IL-1β were observed by western blot and immunofluorescence staining analyses; the mRNA levels of nlrp3, caspase-1 and IL-1β were analyzed using qRT-PCR. Results Low (2.5 μM), medium (5 μM), and high (10 μM) concentrations of curcumin and 50 μM Aβ25-35 were used to perform the experiments in the present study. Curcumin attenuated the IL-1β, IL-6, and TNF-α release and increased SH-SY5Y cell activity, while decreasing the apoptotic percentage of SH-SY5Y cells using Aβ25-35 for cell stimulation ( p < 0.05). Furthermore, curcumin inhibited the expression of NLRP3, caspase-1 and IL-1β and nlrp3 in BV-2 cells ( p < 0.05), However, curcumin did not affect the expression levels of caspase-1 and IL-1β ( p > 0.05) Conclusion Overall, the data indicated that curcumin is a promising neuroprotective agent for suppressing neuroinflammation by inhibiting the NLRP3 inflammasome pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Chuang Wu ◽  
Haojie Yang ◽  
Changpeng Han ◽  
Qingming Wang ◽  
Haiyan Zhang ◽  
...  

Purpose. To study the therapeutic effect of Quyu (QY) Shengxin (SX) decoction (QYSXD) in mice with dextran sulfate sodium- (DSS-) induced ulcerative colitis and to investigate the effects of QYSXD on the regulation of the receptor-interacting protein kinase 1 (RIP1)/receptor-interacting protein kinase 3 (RIP3)/nucleotide-binding oligomerization domain-like receptor family pyrin domain protein 3 (NLRP3) signaling pathway. Method. Thirty-six mice were randomly divided into the following 6 groups: the experimental group (QYSX group), the model group (DSS group), the positive control group (5-aminosalicylic acid (5-ASA) group), the control group, the first component group (QY group), and the second component group (SX group). Each group included 6 mice. Ulcerative colitis (UC) was induced in the mice by providing 3.5% DSS in drinking water. The mice were weighed every day to evaluate the disease activity index (DAI). After 7 days, the mice were sacrificed, and colonic tissues were obtained for colon length measurement. The morphological changes in the colon and the pathological scores of the mice in each group were observed by hematoxylin-eosin (HE) staining. The messenger ribonucleic acid (mRNA) and protein expression levels of RIP1, RIP3, dynamin-related protein 1 (Drp1), NLRP3, cysteinyl aspartate specific proteinase-1 (caspase-1), interleukin (IL)-1β, and IL-18 in the colon tissues of the mice in each group were detected and compared by real-time quantitative reverse transcription PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). The levels of RIP1, RIP3, NLRP3, IL-1β, and IL-8 in the colonic mucosa were detected by ELISA. Western blotting was used to compare the protein expression of Drp1, caspase-1, mitochondrial fission protein 1 (FIS1), and mitophagy-associated protein light chain 3a/b (LC3a/b) among groups. The levels of reactive oxygen species (ROS) in the colonic mucosal cells were compared by immunofluorescence. Results. Compared with those in the DSS group, the mice with DSS-induced colitis in the QYSX group exhibited clearly higher body weights ( P < 0.05 ) and DAI scores ( P < 0.05 ). The colon lengths of the mice in the QYSX group were longer than those in the DSS group ( P < 0.05 ), and the pathological score of the QYSX group was lower than that of the DSS group ( P < 0.05 ). The RIP1, RIP3, Drp1, IL-1β, IL-18, and caspase-1 mRNA levels in the QYSX, 5-ASA, SX, and QY groups were significantly lower than those in the DSS group ( P < 0.05 ), but there were no differences between the QYSX group and the 5-ASA group. The levels of RIP1, RIP3, NLRP3, IL-1β, and IL-18 in the QYSX group were lower than those in the DSS group ( P < 0.01 ). The levels of Drp1, caspase-1, FIS1, and LC3a/b in the QYSX group and the 5-ASA group were lower than those in the DSS group ( P < 0.05 ). The levels of ROS in the colonic mucosal cells in the QYSX, 5-ASA, and QY groups were lower than those in the DSS group ( P < 0.05 ). Conclusion. QYSXD has certain therapeutic effects on DSS-induced colitis in mice and may be as effective as 5-ASA. QY and SX decoctions also have certain effects on colitis; however, these decoctions are not as beneficial as QYSXD. QYSXD may ameliorate colitis by inhibiting the expression of RIP1/RIP3/NLRP3 pathway-related proteins and reversing mitochondrial dysfunction to control inflammation.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qilu Wei ◽  
Ning Kong ◽  
Xiaohui Liu ◽  
Run Tian ◽  
Ming Jiao ◽  
...  

Abstract Background Osteoarthritis (OA) is a disease of the entire joint involving synovial fibrosis and inflammation. Pathological changes to the synovium can accelerate the progression of OA. Pirfenidone (PFD) is a potent anti-fibrotic drug with additional anti-inflammatory properties. However, the influence of PFD on OA is unknown. Methods Proliferation of human fibroblast-like synoviocytes (FLSs) after treatment with TGF-β1 or PFD was evaluated using a Cell Counting Kit-8 assay and their migration using a Transwell assay. The expression of fibrosis-related genes (COL1A1, TIMP-1, and ACTA-2) and those related to inflammation (IL-6 and TNF-α) was quantified by real-time quantitative PCR. The protein expression levels of COL1A1, α-SMA (coded by ACTA-2), IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay. A rabbit model of OA was established and then PFD was administered by gavage. The expression of genes related to fibrosis (COL1A1, TIMP-1, and ADAM-12) and inflammation (IL-6 and TNF-α) was measured using RNA extracted from the synovium. Synovial tissue was examined histologically after staining with H&E, Masson’s trichrome, and immunofluorescence. Synovitis scores, the volume fraction of collagen, and mean fluorescence intensity were calculated. Degeneration of articular cartilage was analyzed using a Safranin O-fast green stain and OARSI grading. Results The proliferation of FLSs was greatest when induced with 2.5 ng/ml TGF-β1 although it did not promote their migration. Therefore, 2.5 ng/ml TGF-β1 was used to stimulate the FLSs and evaluate the effects of PFD, which inhibited the migration of FLSs at concentrations as low as 1.0 mg/ml. PFD decreased the expression of COL1A1 while TGF-β1 increased both mRNA and protein expression levels of IL-6 but had no effect on α-SMA or TNF-α expression. PFD decreased mRNA expression levels of COL1A1, IL-6, and TNF-α in vivo. H&E staining and synovitis scores indicated that PFD reduced synovial inflammation, while Masson’s trichrome and immunofluorescence staining suggested that PFD decreased synovial fibrosis. Safranin O-Fast Green staining and the OARSI scores demonstrated that PFD delayed the progression of OA. Conclusions PFD attenuated synovial fibrosis and inflammation, and postponed the progression of osteoarthritis in a modified Hulth model of OA in rabbits, which was related to its anti-fibrotic and anti-inflammatory properties.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1156
Author(s):  
Madelaine Sugasti-Salazar ◽  
Yessica Y. Llamas-González ◽  
Dalkiria Campos ◽  
José González-Santamaría

Mayaro virus (MAYV) hijacks the host’s cell machinery to effectively replicate. The mitogen-activated protein kinases (MAPKs) p38, JNK, and ERK1/2 have emerged as crucial cellular factors implicated in different stages of the viral cycle. However, whether MAYV uses these MAPKs to competently replicate has not yet been determined. The aim of this study was to evaluate the impact of MAPK inhibition on MAYV replication using primary human dermal fibroblasts (HDFs) and HeLa cells. Viral yields in supernatants from MAYV-infected cells treated or untreated with inhibitors SB203580, SP600125, U0126, or Losmapimod were quantified using plaque assay. Additionally, viral protein expression was analyzed using immunoblot and immunofluorescence. Knockdown of p38⍺/p38β isoforms was performed in HDFs using the PROTACs molecule NR-7h. Our data demonstrated that HDFs are highly susceptible to MAYV infection. SB203580, a p38 inhibitor, reduced MAYV replication in a dose-dependent manner in both HDFs and HeLa cells. Additionally, SB203580 significantly decreased viral E1 protein expression. Similarly, knockdown or inhibition of p38⍺/p38β isoforms with NR-7h or Losmapimod, respectively, affected MAYV replication in a dose-dependent manner. Collectively, these findings suggest that p38 could play an important role in MAYV replication and could serve as a therapeutic target to control MAYV infection.


Sign in / Sign up

Export Citation Format

Share Document