scholarly journals Syntheses, Characterization, and Antibacterial Evaluation of P. grandiflora Extracts Conjugated with Gold Nanoparticles

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
A. Murei ◽  
K. Pillay ◽  
A. Samie

Background. With the recent increase in antibiotic resistance to conventional antibiotics, gold nanoparticles, and medicinal plants, extracts present an interesting alternative. Objectives. This study aimed to synthesize, characterize, and evaluate Pyrenacantha grandiflora Baill extracts and gold nanoparticle conjugates against pathogenic bacteria. Methods. We synthesized gold nanoparticles by chemical and biological methods. The nanoparticles were characterized by the use of UV-visible spectrophotometry, followed by transmission electron microscopy (TEM) and energy-dispersive X-ray analysis (EDX). Gold nanoparticles were conjugated to plant extracts and analyzed with a Fourier-transform infrared spectroscope (FTIR). We determined the antimicrobial activity of the conjugates using well diffusion and the microdilution assays. Results. The UV–visible spectra of gold nanoparticles showed a synthesis peak at 530 nm. FTIR analysis indicated functional biomolecules that were associated with plant extract conjugated gold nanoparticles; the formation of C–H group and carbonyl (C=O) groups, –OH carbonyl, and C≡C groups were also observed. Biologically synthesized nanoparticles were star-shaped when observed by TEM with an average size of 11 nm. Gold nanoparticles synthesized with P. grandiflora water extracts showed the largest zone of inhibition (22 mm). When the gold nanoparticles synthesized by the biological method were conjugated with acetone extracts of P. grandiflora, MIC as low as 0.0063 mg/mL was observed against beta-lactamase producing K. pneumonia. The activity of acetone extracts was improved with chemically synthesized gold nanoparticles particularly when beta-lactamase producing E. coli and MRSA were used as test organisms. A synergistic effect was observed against all tested bacteria, except for MRSA when gold nanoparticles were conjugated with acetone extract. Conclusion. Overall, P. grandiflora tuber extracts conjugated with gold nanoparticles showed a very good antibacterial activity that improved both plant extract and gold nanoparticle’s individual activity.

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Thanh-Truc Vo ◽  
Thi Thanh-Ngan Nguyen ◽  
Thi Thanh-Tam Huynh ◽  
Thi Thuy-Trang Vo ◽  
Thi Thuy-Nhung Nguyen ◽  
...  

Crinum latifolium (CL) leaf is a source of various biologically active compounds such as alkaloid and phenolic compounds, which exhibit anti-inflammatory, antitumor, and antimicrobial effects. In the purpose of expanding applications for the field of bionanotechnology, we report biosynthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) by using aqueous extract from C. latifolium leaf and explore antibacterial activity and catalytic performance for degradation of pollutants. The formation of CL-AgNPs and CL-AuNPs is confirmed and optimized by UV-visible spectroscopy with surface plasmon resonance (SPR) peaks at around 402 and 539 nm, respectively. The spherical CL-AgNPs have an average diameter of 20.5 nm and the multishaped CL-AuNPs possess an average size of 17.6 nm. The actions of four bacterial strains were strongly inhibited by using the CL-AgNPs. Furthermore, the biosynthesized metallic nanoparticles (MNPs) exhibited the excellent catalytic degradation performance of pollutants.


2019 ◽  
Vol 32 (2) ◽  
pp. 471-476
Author(s):  
G. Bhagavanth Reddy ◽  
B. Rajkumar ◽  
K. Girija Mangatayaru ◽  
T.V.D. Prasad Rao

In the present investigation, synthesis of gold nanoparticles (AuNPs) was carried out with microwave irradiation of HAuCl4 and the extract of ginger waste. Synthesized AuNPs were characterized by various techniques including UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The TEM images revealed that the nanoparticles were spherical in shape and the average particle size of the AuNPs was found to be approximately 6 ± 2 nm. The stability of gold nanoparticles was analyzed by zeta potential measurements. A negative zeta potential value of -18.4 mV indicates the stability of the AuNPs. Further, gold nanoparticles exhibited the excellent catalytic activity in reducing 4-nitrophenol to 4-aminophenol in the presence of NaBH4 (reducing agent), and it was found to depend on the amount of AuNPs and temperature. Gold nanoparticles did not show any significant antibacterial activity against the pathogenic bacteria studied.


2020 ◽  
Vol 17 (2(SI)) ◽  
pp. 0633
Author(s):  
Ahmed Mohammed et al.

The research involves preparing gold nanoparticles (AuNPs) and studying the factors that influence the shape, sizes and distribution ratio of the prepared particles according to Turkevich method. These factors include (reaction temperature, initial heating, concentration of gold ions, concentration and quantity of added citrate, reaction time and order of reactant addition). Gold nanoparticles prepared were characterized by the following measurements: UV-Visible spectroscopy, X-ray diffraction and scanning electron microscopy. The average size of gold nanoparticles was formed in the range (20 -35) nm. The amount of added citrate was changed and studied. In addition, the concentration of added gold ions was changed and the calibration curve was calculated used to estimate Au ions in different samples. The effectiveness of gold nanoparticles prepared according to Turkevich method was studied as antibacterial agents against E. coli bacteria. The minimum inhibition concentration of gold nanoparticles that inhibit bacterial growth was calculated using the broth dilution method, which is based on several dilutions to determine the inhibition concentration.


Author(s):  
Guru Kumar Dugganaboyana ◽  
Chethankumar Mukunda ◽  
Suresh Darshini Inakanally

In recent years, green nanotechnology-based approaches using plant materials have been accepted as an environmentally friendly and cost-effective approach with various biomedical applications. In the current study, AgNPs were synthesized using the seed extract of the Eugenia uniflora L. (E.uniflora). Characterization was done using UV-Visible spectroscopy, X-ray diffraction (XRD), scanning electronic microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analyses. The formation of AgNPs has confirmed through UV-Visible spectroscopy (at 466 nm) by the change of color owing to surface Plasmon resonance. Based on the XRD pattern, the crystalline property of AgNPs was established. The functional group existing in seed of E.uniflora extract accountable for the reduction of Ag+ ion and the stabilization of AgNPs was investigated. The morphological structures and elemental composition was determined by SEM and EDX analysis. With the growing application of AgNPs in biomedical perspectives, the biosynthesized AgNPs were evaluated for their antibacterial and along with their antidiabetic potential. The results showed that AgNPs are extremely effective with potent antidiabetic potential at a very low concentration. It also exhibited potential antibacterial activity against the three tested human pathogenic bacteria. Overall, the results highlight the effectiveness and potential applications of AgNPs in biomedical fields such as in the treatment of acute illnesses as well as in drug formulation for treating various diseases such as cancer and diabetes. It could be concluded that E. uniflora seed extract AgNPs can be used efficiently for in vitro evaluation of their antibacterial and antidiabetic effects with potent biomedical applications.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 164 ◽  
Author(s):  
Nikita Zrelovs ◽  
Viktorija Kurbatska ◽  
Zhanna Rudevica ◽  
Ainars Leonchiks ◽  
Davids Fridmanis

Rapid spread of antibiotic resistance throughout the kingdom bacteria is inevitably bringing humanity towards the “post-antibiotic” era. The emergence of so-called “superbugs”—pathogen strains that develop resistance to multiple conventional antibiotics—is urging researchers around the globe to work on the development or perfecting of alternative means of tackling the pathogenic bacteria infections. Although various conceptually different approaches are being considered, each comes with its advantages and drawbacks. While drug-resistant pathogens are undoubtedly represented by both Gram(+) and Gram(−) bacteria, possible target spectrum across the proposed alternative approaches of tackling them is variable. Numerous anti-virulence strategies aimed at reducing the pathogenicity of target bacteria rather than eliminating them are being considered among such alternative approaches. Sortase A (SrtA) is a membrane-associated cysteine protease that catalyzes a cell wall sorting reaction by which surface proteins, including virulence factors, are anchored to the bacterial cell wall of Gram(+) bacteria. Although SrtA inhibition seems perspective among the Gram-positive pathogen-targeted antivirulence strategies, it still remains less popular than other alternatives. A decrease in virulence due to inactivation of SrtA activity has been extensively studied in Staphylococcus aureus, but it has also been demonstrated in other Gram(+) species. In this manuscript, results of past studies on the discovery of novel SrtA inhibitory compounds and evaluation of their potency were summarized and commented on. Here, we discussed the rationale behind the inhibition of SrtA, raised some concerns on the comparability of the results from different studies, and touched upon the possible resistance mechanisms as a response to implementation of such therapy in practice. The goal of this article is to encourage further studies of SrtA inhibitory compounds.


Talanta ◽  
2021 ◽  
pp. 122644
Author(s):  
Guillermo Landa ◽  
Laura G. Miranda-Calderón ◽  
Victor Sebastian ◽  
Silvia Irusta ◽  
Gracia Mendoza ◽  
...  

2006 ◽  
Vol 495 (1-2) ◽  
pp. 280-285 ◽  
Author(s):  
Frédéric Goettmann ◽  
Audrey Moores ◽  
Cédric Boissière ◽  
Pascal Le Floch ◽  
Clément Sanchez

2003 ◽  
Vol 66 (11) ◽  
pp. 2093-2096 ◽  
Author(s):  
S. P. CHAWLA ◽  
D. H. KIM ◽  
C. JO ◽  
J. W. LEE ◽  
H. P. SONG ◽  
...  

Kwamegi (semidried raw Pacific saury) is traditional seafood available in Korea. It has water activity in the range of 0.90 to 0.95. Spoilage and the growth of most pathogenic bacteria is retarded because of low water activity, low temperature, and packaging. However, it is contaminated with bacteria of public health significance and poses a hazard to the consumer because it is consumed raw without any cooking. The effectiveness of these hurdles in preventing the growth of Staphylococcus aureus, Bacillus cereus, Salmonella Typhimurium, and Escherichia coli and the efficacy of irradiation treatment in eliminating these bacteria from kwamegi using inoculated pack studies was examined. Radiation sensitivity of S. aureus, B. cereus, Salmonella Typhimurium, and E. coli in kwamegi was investigated. D10-values of these organisms in kwamegi were 590 ± 13.6, 640 ± 14.9, 560 ± 45.4, and 550 ± 8.6 Gy, respectively. The growth of all four test organisms inoculated into these foods during 4 weeks of storage at an ambient winter temperature (ranging from −5°C to +5°C) was recorded. All four pathogens (inoculated at 106 CFU/g) were eliminated by irradiation at 4 kGy. These studies unequivocally demonstrate that irradiation, with a combination of low water activity and low temperature, results in microbiologically safe kwamegi.


Author(s):  
Zahra Salehi ◽  
Azam Fattahi ◽  
Ensieh lotfali ◽  
Abdolhassan Kazemi ◽  
Ali Shakeri-Zadeh ◽  
...  

Purpose: The present study was performed to examine whether caspofungin-coated gold nanoparticles (CAS-AuNPs) may offer the right platform for sensitivity induction in resistant isolates. Methods: For the purpose of the study, a total of 58 archived Candida species were enrolled in the research. The identification of Candida spp. was performed using polymerase chain reaction-restriction fragment length polymorphism and HWP1 gene amplification approaches. The conjugated CAS-AuNPs were synthesized and then characterized using transmission electron microscopy (TEM) and Zetasizer system to determine their morphology, size, and charge. Furthermore, the efficacy of CAS, CAS-AuNPs conjugate, and AuNPs against Candida spp. was assessed based on the Clinical and Laboratory Standards Institute M60. Finally, the interaction of CAS-AuNPs with Candida element was evaluated via scanning electron microscopy (SEM). Results: According to the TEM results, the synthesized CAS-AuNPs had a spherical shape with an average size of 20 nm. The Zeta potential of CAS-AuNPs was -38.2 mV. Statistical analyses showed that CAS-AuNPs could significantly reduce the minimum inhibitory concentration against C. albicans (P=0.0005) and non-albicans Candida (NAC) species (P<0.0001). All isolates had a MIC value of ≥ 4 µg/ml for CAS, except for C. glabrata. The results of SEM analysis confirmed the effects of AuNPs on the membrane and cell wall structure of C. globrata exposed to CAS-AuNPs, facilitating the formation of pores on the cell wall and finally cell death. Conclusion: The findings revealed that CAS-AuNPs conjugates had significant antifungal effects against Candida spp. through the degradation of the membrane and cell wall integrity. Therefore, it can be concluded that the encapsulation of antifungal drugs in combination with NPs not only diminishes side effects but also enhances the effectiveness of the medications.


Author(s):  
Mohib Shah ◽  
Natasha Anwar ◽  
Samreen Saleem ◽  
Iqbal Munir ◽  
Niaz Ali Shah ◽  
...  

Background. Nanotechnology is promising field for generating new applications. A green synthesis of nanoparticles through biological methods using plant extract have a reliable and ecofriendly approach to improve our global environment. Methods. Silver nanoparticles (AgNPs) were synthesized using aqueous extract of Anagalis arvensis L and silver nitrate and were physicochemically characterized. Results. The stability of AgNPs toward acidity, alkalinity, salinity and temperature showed that they remained stable at room temperature for more than two months. The SEM and TEM analysis of the AgNPs showed that they have a uniform spherical shape with an average size in the range of 40&ndash;78 nm. Further 1-Dibhenyl-2-Picrylhydrazl radical in Anagalis arvensis L.mediated AgNPs showed a maximum activity of 98% at concentration of 200&mu;g/mL. Hydrogen peroxide scavenging assay in Anagalis arvensis L. mediated AgNPs showed a maximum activity of 85% at concentration of 200&mu;g/mL. Reducing power of Anagalis arvensis L.Ag NPs exhibited a higher activity of 330 &mu;g/mL at concentration of 200 &mu;g/mL. These NPs have cytotoxic effects against brine shrimp (Artemia salina) nauplii with a value of 53% LD 178.04&mu;g/mL. Conclusion. The AgNPs synthesized using&nbsp;Anagalis arvensis L. extract demonstrate a broad range of applications.


Sign in / Sign up

Export Citation Format

Share Document